Skip to main content Skip to main navigation menu Skip to site footer

The Effect of Erythropoietin on Cerebral Palsy Prevention in Hypoxic Ischemic Encephalopathy (HIE): A Systemic Review and Meta-Analysis

A Systemic Review and Meta-Analysis

  • Fadhilah Tia Nur ,
  • Harsono Salimo ,
  • Hardiono D Pusponegoro ,
  • Ari Probandari ,
  • Bambang Purwanto ,
  • Soetrisno ,
  • Naili Nur Sa’adah Nuhriawangsa ,

Abstract

Introduction: HIE plays a significant role in global disability, with 60% of newborns with severe HIE passing away or becoming severely disabled. Since there is still debate over the impact of EPO on HIE, we conducted a thorough analysis of the literature to determine whether erythropoietin may prevent cerebral palsy in HIE patients.

Methods: Database search included Cochrane Library, ProQuest, PubMed, ScienceDirect, and Scopus. RCTs reporting cerebral palsy, neurodevelopmental impairments, seizures, brain injury on MRI, or death were included. Qualitative studies were excluded. Critical appraisal was assessed using JBI while the I2, forest plot, and sensitivity analysis were performed on meta-analysis. The funnel plot and Egger’s test were used to assess bias. The GRADE method was used to assess the LOE independently.

Results: A total of 812 infants were included in 6 eligible articles. For the infant with HIE, EPO alone was statistically significant to prevent cerebral palsy in HIE patients (OR=0.90, p = 0.038, 95% confidence interval [95% CI] was 0.57-1.44). Erythropoietin administration also significantly reduced the risk of neurodevelopmental impairments (OR 0.50, p = 0.014, 95% CI 0.36-0.70) and risk of death (OR 0.81, p = 0.018, 95% CI 0.54-1.20). The event rate, which compared EPO vs. control, of cerebral palsy (13.03% vs. 13.43%, p <0.001), neurodevelopmental abnormalities (19.76% vs. 51.86%, p <0.001), seizures (26.75% vs. 37.52%, p <0.001), brain injury on MRI, which divided as white matter, subcortical, cortical, brainstem, and cerebellar (28.55% vs. 68.33%, 25.63% vs. 31.58%, 6.85% vs. 14.53%, 4.73% vs 29.01%, respectively, p <0.001), and death (14.31% vs 20.67%, p <0.001) was reduced.

Conclusion: With only 6 trials included, it is essential to do clinical trials with sufficient power to evaluate erythropoietin further. Researchers and clinicians must collaborate with specialists and form interest groups to define primary and secondary outcomes and acceptable guidelines for using erythropoietin in future trials.

References

  1. She HQ, Sun YF, Chen L, Xiao QX, Luo BY, Zhou HS, Zhou D, Chang QY, Xiong LL. Current analysis of hypoxic-ischemic encephalopathy research issues and future treatment modalities. Front Neurosci. 2023 Jun 9;17:1136500. Available from: https://pubmed.ncbi.nlm.nih.gov/37360183
  2. Satar M, Okulu E, Yıldızdaş HY. Editorial: New perspectives of hypoxic ischemic encephalopathy. Front Pediatr. 2023 Jul 14;11:1251446. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381936
  3. Korf JM, McCullough LD, Caretti V. A narrative review on treatment strategies for neonatal hypoxic ischemic encephalopathy. Transl Pediatr. 2023 Aug 30;12(8):1552-1571. Available from: https://pubmed.ncbi.nlm.nih.gov/37692539
  4. Upadhyay J, Tiwari N, Ansari MN. Cerebral palsy: Aetiology, pathophysiology and therapeutic interventions. Clin Exp Pharmacol Physiol. 2020 Dec;47(12):1891-1901. Available from: https://pubmed.ncbi.nlm.nih.gov/32662125
  5. Zhang S, Li B, Zhang X, Zhu C, Wang X. Birth Asphyxia Is Associated With Increased Risk of Cerebral Palsy: A Meta-Analysis. Front Neurol. 2020 Jul 16;11:704. Available from: https://pubmed.ncbi.nlm.nih.gov/32765409
  6. Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: a clinical overview. Transl Pediatr. 2020 Feb;9(1):S125-S135. Available from: https://pubmed.ncbi.nlm.nih.gov/32206590
  7. Abd Elmagid DS, Magdy H. Evaluation of risk factors for cerebral palsy. Egypt J Neurol Psychiatry Neurosurg. 3032;57:13. Available from: https://ejnpn.springeropen.com/articles/10.1186/s41983-020-00265-1
  8. Dogruoz Karatekin B, Icagasioglu A. Quality of Life, Participation, and Functional Status in Cerebral Palsy: A 13-year Follow-up Study. Medeni Med J. 2022 Mar 18;37(1):105-112. Available from: https://pubmed.ncbi.nlm.nih.gov/35306797
  9. Bang SJ, Lee J, Jeon GW, Jun YH. Erythropoietin Reduces Death and Neurodevelopmental Impairment in Neonatal Hypoxic-Ischemic Encephalopathy. Neonatal Med 2022 November;29(4):123-129. Available from: https://www.neo-med.org/m/journal/view.php?number=1068
  10. Zhu C, Kang W, Xu F, Cheng X, Zhang Z, Jia L, Ji L, Guo X, Xiong H, Simbruner G, Blomgren K, Wang X. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2009 Aug;124(2):e218-26. Available from: https://pubmed.ncbi.nlm.nih.gov/19651565
  11. Juul SE, Comstock BA, Heagerty PJ, Mayock DE, Goodman AM, Hauge S, Gonzalez F, Wu YW. High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL): A Randomized Controlled Trial - Background, Aims, and Study Protocol. Neonatology. 2018;113(4):331-338. Available from: https://pubmed.ncbi.nlm.nih.gov/29514165
  12. Wu YW, Comstock BA, Gonzalez FF, Mayock DE, Goodman AM, Maitre NL, et al. Trial of Erythropoietin for Hypoxic-Ischemic Encephalopathy in Newborns. N Engl J Med. 2022 Jul 14;387(2):148-159. Available from: https://pubmed.ncbi.nlm.nih.gov/35830641
  13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71. Available from: https://pubmed.ncbi.nlm.nih.gov/33782057
  14. Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med Res Methodol. 2018 Jan 10;18(1):5. Available from: https://pubmed.ncbi.nlm.nih.gov/29316881
  15. Paulson A, Vargus-Adams J. Overview of Four Functional Classification Systems Commonly Used in Cerebral Palsy. Children (Basel). 2017 Apr 24;4(4):30. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406689
  16. Eliks M, Gajewska E. The Alberta Infant Motor Scale: A tool for the assessment of motor aspects of neurodevelopment in infancy and early childhood. Front Neurol. 2022 Sep 14;13:927502. Available from: https://pubmed.ncbi.nlm.nih.gov/36188401
  17. Msall ME. Measuring functional skills in preschool children at risk for neurodevelopmental disabilities. Ment Retard Dev Disabil Res Rev. 2005;11(3):263-73. Available from: https://pubmed.ncbi.nlm.nih.gov/16161097
  18. Lefebvre C, Glanville J, Briscoe S, Featherstone R, Littlewood A, Metzendorf M-I, et al. Chapter 4: Searching for and selecting studies. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated October 2023). Cochrane, 2023. Available from www.training.cochrane.org/handbook.
  19. Li T, Higgins JPT, Deeks JJ (editors). Chapter 5: Collecting data. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from www.training.cochrane.org/handbook.
  20. Barker TH, Stone JC, Sears K, Klugar M, Tufanaru C, Leonardi-Bee J, Aromataris E, Munn Z. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evidence Synthesis. 2023;21(3):494-506. Available from: https://pubmed.ncbi.nlm.nih.gov/36727247
  21. Tenny S, Hoffman MR. Prevalence. 2023 May 22. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 28613617. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430867
  22. Popay J, Roberts H, Sowden A, Petticrew M, Britten N, Arai L. Developing guidance on the conduct of narrative synthesis in systematic reviews. J Epidemiol Community Health. 2005;59(1):A7. Available from: https://www.lancaster.ac.uk/media/lancaster-university/content-assets/documents/fhm/dhr/chir/NSsynthesisguidanceVersion1-April2006.pdf
  23. Fu R, Vandermeer BW, Shamliyan TA, et al. Handling Continuous Outcomes in Quantitative Synthesis. 2013 Jul 25. In: Methods Guide for Effectiveness and Comparative Effectiveness Reviews [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK154408/
  24. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013 Nov 1;67(11):974-8. Available from: https://pubmed.ncbi.nlm.nih.gov/23963506
  25. Schünemann H, Brożek J, Guyatt G, Oxman A, editors. GRADE handbook for grading quality of evidence and strength of recommendations. McMaster University, Canada: Cochrane; 2015. Available from: https://gdt.gradepro.org/app/handbook/handbook.html
  26. Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from www.training.cochrane.org/handbook.
  27. Malla RR, Asimi R, Teli MA, Shaheen F, Bhat MA. Erythropoietin monotherapy in perinatal asphyxia with moderate to severe encephalopathy: a randomized placebo-controlled trial. J Perinatol. 2017 May;37(5):596-601. Available from: https://pubmed.ncbi.nlm.nih.gov/28277490
  28. Wu YW, Goodman AM, Chang T, Mulkey SB, Gonzalez FF, Mayock DE, et al. Placental pathology and neonatal brain MRI in a randomized trial of erythropoietin for hypoxic-ischemic encephalopathy. Pediatr Res. 2020 Apr;87(5):879-884. Available from: https://pubmed.ncbi.nlm.nih.gov/31261373
  29. Avasiloaiei A, Dimitriu C, Moscalu M, Paduraru L, Stamatin M. High-dose phenobarbital or erythropoietin for the treatment of perinatal asphyxia in term newborns. Pediatr Int. 2013 Oct;55(5):589-93. Available from: https://pubmed.ncbi.nlm.nih.gov/23659666
  30. El Shimi MS, Awad HA, Hassanein SM, Gad GI, Imam SS, Shaaban HA, El Maraghy MO. Single dose recombinant erythropoietin versus moderate hypothermia for neonatal hypoxic ischemic encephalopathy in low resource settings. J Matern Fetal Neonatal Med. 2014 Sep;27(13):1295-300. Available from: https://pubmed.ncbi.nlm.nih.gov/24134405
  31. Wu YW, Mathur AM, Chang T, McKinstry RC, Mulkey SB, Mayock DE, et al. High-Dose Erythropoietin and Hypothermia for Hypoxic-Ischemic Encephalopathy: A Phase II Trial. Pediatrics. 2016 Jun;137(6):e20160191. Available from: https://pubmed.ncbi.nlm.nih.gov/27244862
  32. Ohlsson A, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2020 Feb 11;2(2):CD004863. Available from: https://pubmed.ncbi.nlm.nih.gov/32048730
  33. Perrone S, Lembo C, Gironi F, Petrolini C, Catalucci T, Corbo G, Buonocore G, Gitto E, Esposito SMR. Erythropoietin as a Neuroprotective Drug for Newborn Infants: Ten Years after the First Use. Antioxidants (Basel). 2022 Mar 28;11(4):652. Available from: https://pubmed.ncbi.nlm.nih.gov/35453337
  34. Frymoyer A, Juul SE, Massaro AN, Bammler TK, Wu YW. High-dose erythropoietin population pharmacokinetics in neonates with hypoxic-ischemic encephalopathy receiving hypothermia. Pediatr Res. 2017 Jun;81(6):865-872. Available from: https://pubmed.ncbi.nlm.nih.gov/28099423
  35. Zhang K, Wang J, Xi H, Li L, Lou Z. Investigation of Neuroprotective Effects of Erythropoietin on Chronic Neuropathic Pain in a Chronic Constriction Injury Rat Model. J Pain Res. 2020 Nov 30;13:3147-3155. Available from: https://pubmed.ncbi.nlm.nih.gov/33311994
  36. Juenemann M, Braun T, Schleicher N, Yeniguen M, Schramm P, Gerriets T, et al. Neuroprotective mechanisms of erythropoietin in a rat stroke model. Transl Neurosci. 2020 May 18;11(1):48-59. Available from: https://pubmed.ncbi.nlm.nih.gov/33312715
  37. Suresh S, Rajvanshi PK, Noguchi CT. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front Physiol. 2020 Jan 17;10:1534. Available from: https://pubmed.ncbi.nlm.nih.gov/32038269
  38. Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother. 2021 Jul;139:111558. Available from: https://pubmed.ncbi.nlm.nih.gov/33894624
  39. Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel). 2020 Nov 26;13(12):424. Available from: https://pubmed.ncbi.nlm.nih.gov/33255969
  40. Simon F, Floros N, Ibing W, Schelzig H, Knapsis A. Neurotherapeutic potential of erythropoietin after ischemic injury of the central nervous system. Neural Regen Res. 2019 Aug;14(8):1309-1312. Available from: https://pubmed.ncbi.nlm.nih.gov/30964047
  41. Zhu C, Kang W, Xu F, Cheng X, Zhang Z, Jia L, Ji L, Guo X, Xiong H, Simbruner G, Blomgren K, Wang X. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2009 Aug;124(2):e218-26. Available from: https://pubmed.ncbi.nlm.nih.gov/19651565
  42. McPherson RJ, Juul SE. Erythropoietin for infants with hypoxic-ischemic encephalopathy. Curr Opin Pediatr. 2010 Apr;22(2):139-45. Available from: https://pubmed.ncbi.nlm.nih.gov/20090525
  43. Oorschot DE, Sizemore RJ, Amer AR. Treatment of Neonatal Hypoxic-Ischemic Encephalopathy with Erythropoietin Alone, and Erythropoietin Combined with Hypothermia: History, Current Status, and Future Research. Int J Mol Sci. 2020 Feb 21;21(4):1487. Available from: https://pubmed.ncbi.nlm.nih.gov/32098276
  44. Ezenwa B, Ezeaka C, Fajolu I, Ogbenna A, Olowoyeye O, Nwaiwu O, Opoola Z, Olorunfemi G. Impact of Erythropoietin in the management of Hypoxic Ischaemic Encephalopathy in resource-constrained settings: protocol for a randomized control trial. BMC Neurol. 2020 May 4;20(1):171. Available from: https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-020-01751-y
  45. Elmahdy H, El-Mashad AR, El-Bahrawy H, El-Gohary T, El-Barbary A, Aly H. Human recombinant erythropoietin in asphyxia neonatorum: pilot trial. Pediatrics. 2010 May;125(5):e1135-42. Available from: https://pubmed.ncbi.nlm.nih.gov/20385632
  46. Wu YW, Bauer LA, Ballard RA, Ferriero DM, Glidden DV, Mayock DE, et al. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics. 2012 Oct;130(4):683-91. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457622

How to Cite

Nur, F. T. ., Salimo, H. ., Pusponegoro, H. D. ., Probandari, A. ., Purwanto, B. ., Soetrisno, & Nuhriawangsa, N. N. S. . (2024). The Effect of Erythropoietin on Cerebral Palsy Prevention in Hypoxic Ischemic Encephalopathy (HIE): A Systemic Review and Meta-Analysis: A Systemic Review and Meta-Analysis. Bali Medical Journal, 13(1), 635–646. https://doi.org/10.15562/bmj.v13i1.5152

HTML
1

Total
0

Share

Search Panel

Fadhilah Tia Nur
Google Scholar
Pubmed
BMJ Journal


Harsono Salimo
Google Scholar
Pubmed
BMJ Journal


Hardiono D Pusponegoro
Google Scholar
Pubmed
BMJ Journal


Ari Probandari
Google Scholar
Pubmed
BMJ Journal


Bambang Purwanto
Google Scholar
Pubmed
BMJ Journal


Soetrisno
Google Scholar
Pubmed
BMJ Journal


Naili Nur Sa’adah Nuhriawangsa
Google Scholar
Pubmed
BMJ Journal