Skip to main content Skip to main navigation menu Skip to site footer

Unrevealing the role of lacritin in eye disease: An updated systematic review

Abstract

Link of Video Abstract: https://youtu.be/L9MLcss_SBI

 

Introduction: Lacritin is a potential human tear glycoprotein for treating some diseases involving eye such as bacterial corneal ulcers. However, the specific role of lacritin in improving the condition of eye diseases is still not known with certainty. The purpose of this study is to review the role of lacritin in eye diseases.

Methods: This study used literature from January 2001 until June 2023 according to the (Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA). The literature was from electronic databases; PubMed, PubMed, WileyOnline, Science Direct, and Google Scholar. Full-text articles that evaluate the lacritin effect on bacterial corneal ulcers were included in this systematic review.

Results: A total of 26 studies were included in this review. Lacritin has a potential role in ZO1 expression (ZO1 is a type of protein structure in tight junction), which is essential for the corneal epithelium's structural integrity. Lacritin also induces tear protein secretion, which is an essential step in corneal ulcer healing.

Conclusion: Lacritin is potentially important in alternative modalities for bacterial corneal ulcers. However, a further study investigating the lacritin effect in corneal healing is suggested.

References

  1. Knop E, Knop N, Brewitt H. Dry eye disease as a complex dysregulation of the functional anatomy of the ocular surface. New concepts for understanding dry eye disease. Ophthalmology. 2003;100:917–28.
  2. Galor A, Feuer W, Lee DJ, Florez H, Carter D, Pouyeh B, et al. Prevalence and risk factors of dry eye syndrome in a United States veterans affairs population. Am J Ophthalmol. 2011;152(3):377-384.e2.
  3. Gupta N, Prasad I, Jain R, D’Souza P. Estimating the prevalence of dry eye among Indian patients attending a tertiary ophthalmology clinic. Ann Trop Med Parasitol. 2010;104:247–55.
  4. Holly FJ, Lemp MA. Tear physiology and dry eyes. Surv Ophthalmol. 1977;22:69–87.
  5. Assouti M, Vynios DH, Anagnostides ST, Papadopoulos G, Georgakopoulos CD, Gartaganis SP. Collagen type IX and HNK-1 epitope in tears of patients with pseudoexfoliation syndrome. Biochim Biophys Acta. 2006;1762:54–8.
  6. Fleming A. On a remarkable bacteriolytic element found in tissues and secretion. Proceeding of the Royal Society B. 1922;21:463-480.
  7. Aho HJ, Saari KM, Kallajoki M, Nevalainen TJ. Synthesis of group II phospholipase A2 and lysozyme in lacrimal glands. Investigative Ophthalmology & Visual Science.1996;37:1826-32.
  8. Sanghi S, Kumar R, Lumsden A, Dickinson D, Klepeis V, Trinkaus-Randall V, et al. CDNA and genomic cloning of Lacritin, a novel secretion enhancing factor from the human lacrimal gland. Journal of Molecular Biology. 2001;310(1):127–39.
  9. Nakajima T, Walkup RD, Tochigi A, Shearer TR, Azuma M. Establishment of an appropriate animal model for lacritin studies: Cloning and characterization of lacritin in monkey eyes. 2007;85(5):651–8.
  10. Seifert K, Gandia NC, Wilburn JK, Bower KS, Sia RK, Ryan DS, et al. Tear lacritin levels by age, sex, and time of day in healthy adults. Investigative Opthalmology & Visual Science. 2012;53(10):6610.
  11. McKown RL, Coleman Frazier EV, Zadrozny KK, Deleault AM, Raab RW, Ryan DS, et al. A cleavage-potentiated fragment of tear lacritin is bactericidal. J Biol Chem. 2014;289(32):22172-82.
  12. Fujii A, Morimoto-Tochigi A, Walkup RD, Shearer TR, Azuma M. Lacritin- induced secretion of tear proteins from cultured monkey lacrimal acinar cells. Invest Ophthalmol Vis Sci. 2013;54(4):2533-40.
  13. Samudre S, Lattanzio FA, Lossen V, Hosseini A, Sheppard JD, McKown RL, et al. Lacritin, a novel human tear glycoprotein, promotes sustained basal tearing and is well-tolerated. Invest Ophthalmol Vis Sci. 2011;52(9):6265.
  14. Wang N, Zimmerman K, Raab RW, McKown RL, Hutnik CM, Talla V, et al. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J Biol Chem. 2013;288(25):18146-61.
  15. Wang W, Despanie J, Shi P, Edman MC, Lin Y-A, Cui H, et al. Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. J Mater Chem B. 2014;2:8131–41.
  16. Vijmasi T, Chen FY, Balasubbu S, Gallup M, McKown RL, Laurie GW, et al. Topical administration of lacritin is a novel therapy for aqueous-deficient dry eye disease. Invest Ophthalmol Vis Sci. 2014;55(8):5401–9.
  17. Karnati R, Talla V, Peterson K, Laurie GW. Lacritin and other autophagy-associated proteins in ocular surface health. Exp Eye Res. 2016;144:4-13.
  18. Kosikowska P, Lesner A. Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015). Expert Opin Ther Pat. 2016;26:689–702.
  19. Vantaku VR, Gupta G, Rapalli KC, Karnati R. Lacritin salvages human corneal epithelial cells from lipopolysaccharide-induced cell death. Sci Rep. 2015;5(1): 18362.
  20. Georgiev GA, Gh MS, Romano J, Dias Teixeira KL, Struble C, Ryan DS, et al. Lacritin proteoforms prevent tear film collapse and maintain epithelial homeostasis. J Biol Chem. 2021;296:100070.
  21. Tauber J, Laurie GW, Parsons EC, Odrich MG. Lacripep for the treatment of primary sjögren–associated ocular surface disease: results of the first-in-human study. Cornea. 2023;42:847–57.
  22. Efraim Y, Chen FYT, Cheong KN, Gaylord EA, McNamara NA, Knox SM. A synthetic tear protein resolves dry eye through promoting corneal nerve regeneration. Cell Reports. 2022;40:11307.
  23. Zhang Y, Wang N, Raab RW, McKown RL, Irwin JA, Kwon I, et al. Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity. J Biol Chem. 2013;288(17):12090-101.
  24. Wang W, Jashnani A, Aluri SR, Gustafson JA, Hsueh PY, Yarber F, et al. A thermo-responsive protein treatment for dry eyes. J Control Release. 2014;199(10):156-67.
  25. Rao P, McKown RL, Laurie GW, Suvas S. Development of lacrimal gland inflammation in the mouse model of herpes stromal keratitis. Exp Eye Res. 2019;184:101–6.
  26. Bron AJ, Tiffany JM, Gouveia SM, Yokoi N, Voon LW. Functional aspects of the tear film lipid layer. Exp Eye Res. 2004;78:347–60.
  27. Sugrue SP, Zieske JD. ZO1 in corneal epithelium: association to the zonula occludens and adherens junctions. Exp Eye Res. 1997;64:11–20.
  28. Lee C, Edman MC, Laurie GW, Hamm-Alvarez SF, MacKay JA. Biosynthesized multivalent lacritin peptides stimulate exosome production in human corneal epithelium. Int J Mol Sci. 2020;21:E6157.
  29. Laurie DE, Splan RK, Green K, Still KM, McKown RL, Laurie GW. Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a C-terminal-like fragment. Invest Ophthalmol Vis Sci. 2012;53(10):6130.
  30. Feng MM, Baryla J, Liu H, Laurie GW, McKown RL, Ashki N, Bhayana D, Hutnik CM. Cytoprotective effect of lacritin on human corneal epithelial cells exposed to benzalkonium chloride in vitro. Curr Eye Res. 2014;39(6):604-10.
  31. Ma P, Beck SL, Raab RW, McKown RL, Coffman GL, Utani A, et al. Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J Cell Biol. 2006;174(7):1097–106.
  32. Wang J, Wang N, Xie J, Walton SC, McKown RL, Raab RW, et al. Restricted epithelial proliferation by lacritin via PKCα-dependent NFAT and mTOR pathways. J Cell Biol. 2006;174(5):689–700.
  33. Biswas PK, Banerjee K, Kim B, Kinchington PR, Rouse BT. Role of inflammatory cytokine-induced cyclooxygenase 2 in the ocular immunopathologic disease herpetic stromal keratitis. J Virol. 2005;79.
  34. Morimoto-Tochigi A, Walkup RD, Nakajima E, Shearer TR, Azuma M. Mechanism for carbachol-induced secretion of lacritin in cultured monkey lacrimal acinar cells. Invest Ophthalmol Vis Sci. 2010;51(9):4395.
  35. Koo B-S, Lee D-Y, Ha H-S, Kim JC, Kim CW. Comparative analysis of the tear protein expression in blepharitis patients using two-dimensional electrophoresis. J Proteome Res. 2005;4(3):719–24.
  36. Aluru SV, Agarwal S, Srinivasan B, Iyer GK, Rajappa SM, Tatu U, et al. Lacrimal proline-rich 4 (LPRR4) protein in the tear fluid is a potential biomarker of dry eye syndrome. PLoS ONE. 2012;7(12):e51979.
  37. Tsai PS, Evmas JE, Green KM, Sullivan RM, Schaumburg DA, Richards SM, et al. Proteomic analysis of human meibomian gland secretions. Br J Ophthalmol. 2006;90(3):372–7.
  38. Zhou L, Beuerman RW, Foo Y, Liu S, Ang LPK, Tan DTH. Characterisation of human tear proteins using high-resolution mass spectrometry. Ann Acad Med Singapore. 2006;35:400-7.
  39. Kovács I, Ludány A, Koszegi T, Fehér J, Kovács B, Szolcsányi J, et al. Substance P released from sensory nerve endings influences tear secretion and goblet cell function in the rat. Neuropeptides. 2005;39:395–402.
  40. Gaddipati S, Rao P, Jerome AD, Burugula BB, Gerard NP, Suvas S. Loss of neurokinin-1 receptor alters ocular surface homeostasis and promotes an early development of herpes stromal keratitis. J Immunol. 2016;197:4021–33.
  41. Suvas S. Role of substance P neuropeptide in inflammation, wound healing, and tissue homeostasis. J Immunol. 2017;199:1543–52.
  42. Chen Y, Wang S, Alemi H, Dohlman T, Dana R. Immune regulation of the ocular surface. Exp Eye Res. 2022;218:109007.
  43. Mikulec AA, Tanelian DL. CGRP increases the rate of corneal reepithelialization in an in vitro whole mount preparation. J Ocul Pharmacol Ther. 1996;12:417–23.
  44. Uusitalo H, Krootila K, Palkama A. Calcitonin gene-related peptide (CGRP) immunoreactive sensory nerves in the human and Guinea pig uvea and cornea. Exp Eye Res. 1989;48:467–75.
  45. Pal-Ghosh S, Tadvalkar G, Stepp MA. Alterations in corneal sensory nerves during homeostasis, aging, and after injury in mice lacking the heparan sulfate proteoglycan syndecan-1. Invest Ophthalmol Vis Sci. 2017;58:4959–75.
  46. Pflugfelder SC. Tear dysfunction and the cornea: LXVIII Edward Jackson Memorial Lecture. Am J Ophthalmol. 2011;52(6):900-9.e1.
  47. Liu J, Li Z. Resident innate immune cells in the cornea. Front Immunol. 2021;12:620284.
  48. Kumar A, Yu FX. Toll-like receptors and corneal innate immunity. Curr Mol Med. 2006;6(3):327–37.
  49. Krachmer JH, Mannis MJ, Holland EJ. Cornea: Fundamental, Diagnosis and Management, Volume One, Third Edition. Chapter 5: A Matrix of Pathologic Responses in the Cornea. 2011: P84-86; 1121-1122.
  50. Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest. 2001;107(12):1491-95.
  51. Kirkby N, Melissa V, Chanb Zaissd AK. Systematic study of constitutive cyclooxygenase-2 expression: Role of NF-κB and NFAT transcriptional pathways. PNAS. 2016;113(2).
  52. Slice LW, Chiu T, Rozengurt E. Angiotensin II and epidermal growth factor induce cyclooxygenase-2 expression in intestinal epithelial cells through small GTPases using distinct signaling pathways. J Biol Chem. 2005;280:1582–93.
  53. Neufang G, Furstenberger G, Heidt M, Marks F, Muller-Decke K. Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc Natl Acad Sci USA. 2001;98:7629–34.
  54. Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem. 2001;276:18563–9.
  55. Zhou L, Beuerman R, Chew AP, Koh SK, Cafaro T, Urrets-Zavalia E, et al. Quantitative analysis of N-linked glycoproteins in tear fluid of climatic droplet keratopathy by glycopeptide capture and iTRAQ. J Proteome Res. 2009;8(4):1992–2003.
  56. Lipsky PE, Brooks P, Crofford LJ, DuBois R, Graham D, Simon LS, et al. Unresolved issues in the role of cyclooxygenase-2 in normal physiologic processes and disease. Arch Intern Med. 2000;160:913–20.
  57. Suzuki K, Tanaka T, Enoki M, Nishida T. Coordinated reassembly of the basement membrane and junctional proteins during corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2000;41:2495–500.
  58. Hinz B, Brune K. New insights into physiological and pathophysiological functions of cyclo-oxygenase-2. Curr Opin Anaesthesiol. 2000;13:585–90.

How to Cite

Eka, H., Ichsan, A. M., Massi, M. N., Muhiddin, H. S., SU, S., Umar, B. T., Miskad, U., & Zairuddin, A. A. (2024). Unrevealing the role of lacritin in eye disease: An updated systematic review. Bali Medical Journal, 13(1), 564–576. https://doi.org/10.15562/bmj.v13i1.5120

HTML
9

Total
0

Share

Search Panel

Hasnah Eka
Google Scholar
Pubmed
BMJ Journal


Andi Muhammad Ichsan
Google Scholar
Pubmed
BMJ Journal


Muh. Nasrum Massi
Google Scholar
Pubmed
BMJ Journal


Habibah Setyawati Muhiddin
Google Scholar
Pubmed
BMJ Journal


Suhardjo SU
Google Scholar
Pubmed
BMJ Journal


Batari Todja Umar
Google Scholar
Pubmed
BMJ Journal


Upik Miskad
Google Scholar
Pubmed
BMJ Journal


Andi Alfian Zairuddin
Google Scholar
Pubmed
BMJ Journal