Skip to main content Skip to main navigation menu Skip to site footer

Comparison of generation time between Escherichia coli non- extended spectrum beta-lactamase (non-ESBL) and ESBL on ciprofloxacin and tetracycline induction: Experimental research

  • Budi Mulyawan ,
  • Agung Dwi Wahyu Widodo ,
  • Pepy Dwi Endraswari ,

Abstract

Background: Escherichia coli (E. coli) is the leading cause of sepsis in the world, a country with low-middle income and the fourth largest population globally. First-generation antibiotics are still common, especially fluoroquinolones and tetracyclines, which often experience resistance in E. coli. This study aimed to analyze comparison of generation time of E. coli on ciprofloxacin and tetracycline.

Methods: This study was experimental with a posttest-only control group design. The subjects of this study were E. coli non-extended spectrum beta-lactamase (non-ESBL) and ESBL, which have ciprofloxacin of 0.25 µg/mL and tetracycline of 4 µg/mL exposed. Colony counting was performed every hour for twelve hours. The statistical test used was the independent t-test with p <0.05.

Result: E. coli non-ESBL on ciprofloxacin induction showed a generation time of 52.76 min and tetracycline of 53.66 min. However, E ESBL on ciprofloxacin induction showed a generation time of 53.96 min and tetracycline of 55.40 min. The comparison of E. coli non-ESBL exposed to ciprofloxacin and tetracycline showed no significant difference (t = 1.364; 95% CI = -0.565 – 2.352; p = 0.202) and E. coli ESBL also (t = 1.469; CI 95% = -0.748 – 3.645; p = 0.173).

Conclusion: No significant comparison exists between generation time in E. coli non-ESBL and ESBL on ciprofloxacin and tetracycline induction.

References

  1. Causes and outcomes of sepsis in southeast Asia: a multinational multicentre cross-sectional study. The Lancet Global health. 2017;5(2):e157-67.
  2. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. Antimicrobial resistance in Escherichia coli. Microbiology spectrum. 2018;6(4).
  3. MacKinnon MC, Sargeant JM, Pearl DL, Reid-Smith RJ, Carson CA, Parmley EJ, et al. Evaluation of the health and healthcare system burden due to antimicrobial-resistant Escherichia coli infections in humans: a systematic review and meta-analysis. Antimicrobial resistance and infection control. 2020;9(1):200.
  4. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens (Basel, Switzerland). 2021;10(10).
  5. Sharma J, Sharma M, Ray P. Detection of TEM & SHV genes in Escherichia coli & Klebsiella pneumoniae isolates in a tertiary care hospital from India. The Indian journal of medical research. 2010;132:332-6.
  6. Hadi U, Kuntaman K, Qiptiyah M, Paraton H. Problem of antibiotic use and antimicrobial resistance in Indonesia: Are we really making progress? Indonesian Journal of Tropical and Infectious Disease. 2013;4(4):5-8.
  7. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi journal of biological sciences. 2015;22(1):90-101.
  8. Zhao X, Drlica K. A unified anti-mutant dosing strategy. The Journal of antimicrobial chemotherapy. 2008;62(3):434-6.
  9. Naqvi SAR, Roohi S, Iqbal A, Sherazi TA, Zahoor AF, Imran M. Ciprofloxacin: from infection therapy to molecular imaging. Molecular biology reports. 2018;45(5):1457-68.
  10. Alizade H. Escherichia coli in Iran: An overview of antibiotic resistance: A review article. Iranian journal of public health. 2018;47(1):1-12.
  11. Aditya V, Kotian A, Saikrishnan S, Rohit A, Mithoor D, Karunasagar I, et al. Effect of ciprofloxacin and in vitro gut conditions on biofilm of Escherichia coli isolated from clinical and environmental sources. Journal of applied microbiology. 2022;132(2):964-77.
  12. Rusu A, Buta EL. The development of third-generation tetracycline antibiotics and new perspectives. Pharmaceutics. 2021;13(12).
  13. Møller TS, Overgaard M, Nielsen SS, Bortolaia V, Sommer MO, Guardabassi L, et al. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC microbiology. 2016;16:39.
  14. Ramdhani D, Kusuma SAF, Sediana D, Bima APH, Khumairoh I. Comparative study of cefixime and tetracycline as an evaluation policy driven by the antibiotic resistance crisis in Indonesia. Scientific reports. 2021;11(1):18461.
  15. Limato R, Nelwan EJ, Mudia M, de Brabander J, Guterres H, Enty E, et al. A multicentre point prevalence survey of patterns and quality of antibiotic prescribing in Indonesian hospitals. JAC-antimicrobial resistance. 2021;3(2):dlab047.
  16. Amin M, Wasito EB, Triyono EA. Comparison between exposure of ciprofloxacin and cefotaxime on developing of Escherichia coli ESBL. Folia Medica Indonesiana. 2020;56(2):86-90.
  17. Bello González Tde J, Zuidema T, Bor G, Smidt H, van Passel MW. Study of the aminoglycoside subsistence phenotype of bacteria residing in the gut of humans and zoo animals. Frontiers in microbiology. 2015;6:1550.
  18. Tamma PD, Harris PNA, Mathers AJ, Wenzler E, Humphries RM. Breaking down the breakpoints: rationale for the 2022 clinical and laboratory standards Institute Revised Piperacillin-Tazobactam breakpoints against Enterobacterales. Clin Infect Dis. 2022:ciac688.
  19. Rhee C, Kadri SS, Dekker JP, Danner RL, Chen HC, Fram D, et al. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA network open. 2020;3(4):e202899.
  20. Yang P, Chen Y, Jiang S, Shen P, Lu X, Xiao Y. Association between the rate of fluoroquinolones-resistant gram-negative bacteria and antibiotic consumption from China based on 145 tertiary hospitals data in 2014. BMC infectious diseases. 2020;20(1):269.
  21. Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nature reviews Microbiology. 2014;12(7):465-78.
  22. Kelesidis T, Falagas ME. Substandard/counterfeit antimicrobial drugs. Clinical microbiology reviews. 2015;28(2):443-64.
  23. McManus D, Naughton BD. A systematic review of substandard, falsified, unlicensed and unregistered medicine sampling studies: a focus on context, prevalence, and quality. BMJ global health. 2020;5:e002393.
  24. Zabala GA, Bellingham K, Vidhamaly V, Boupha P, Boutsamay K, Newton PN, et al. Substandard and falsified antibiotics: neglected drivers of antimicrobial resistance? BMJ global health. 2022;7: e008587.
  25. Dalhoff A. Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: a puzzling paradox or a logical consequence of their mode of action? Eur J Clin Microbiol Infect Dis. 2015;34(4):661-8.
  26. van der Putten BCL, Remondini D, Pasquini G, Janes VA, Matamoros S, Schultsz C. Quantifying the contribution of four resistance mechanisms to ciprofloxacin MIC in Escherichia coli: a systematic review. The Journal of antimicrobial chemotherapy. 2019;74(2):298-310.
  27. Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA, Badran AH, et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science. 2021;371(6531): eaba0862.
  28. Kakatkar AS, Das A, Shashidhar R. Ciprofloxacin induced antibiotic resistance in Salmonella Typhimurium mutants and genome analysis. Archives of microbiology. 2021;203(10):6131-42.
  29. Taylor D, Verdon N, Lomax P, Allen RJ, Titmuss S. Tracking the stochastic growth of bacterial populations in microfluidic droplets. Physical biology. 2022;19(2):026003.
  30. Valat C, Hirchaud E, Drapeau A, Touzain F, de Boisseson C, Haenni M, et al. Overall changes in the transcriptome of Escherichia coli O26:H11 induced by a subinhibitory concentration of ciprofloxacin. Journal of applied microbiology. 2020;129(6):1577-88.
  31. Ponmalar II, Swain J, Basu JK. Modification of bacterial cell membrane dynamics and morphology upon exposure to sub inhibitory concentrations of ciprofloxacin. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2022;1864(8):183935.
  32. Ranieri MR, Whitchurch CB, Burrows LL. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Current opinion in microbiology. 2018;45:164-9.
  33. Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, et al. Disrupting the ArcA regulatory network amplifies the fitness cost of tetracycline resistance in Escherichia coli. mSystems. 2023;8(1):e0090422.
  34. Migliore L, Rotini A, Thaller MC. Low doses of tetracycline trigger the E. coli growth: A case of hormetic response. Dose-response. 2013;11(4):550-7.
  35. Boehm A, Steiner S, Zaehringer F, Casanova A, Hamburger F, Ritz D, et al. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Molecular microbiology. 2009;72(6):1500-16.
  36. Qu S, Dai C, Shen Z, Tang Q, Wang H, Zhai B, et al. Mechanism of synergy between tetracycline and quercetin against antibiotic resistant Escherichia coli. Frontiers in microbiology. 2019;10:2536.
  37. Shin SW, Shin MK, Jung M, Belaynehe KM, Yoo HS. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Applied and environmental microbiology. 2015;81(16):5560-6.
  38. Nemeth J, Oesch G, Kuster SP. Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. The Journal of antimicrobial chemotherapy. 2015;70(2):382-95.

How to Cite

Mulyawan, B. ., Widodo, A. D. W., & Endraswari, P. D. (2024). Comparison of generation time between Escherichia coli non- extended spectrum beta-lactamase (non-ESBL) and ESBL on ciprofloxacin and tetracycline induction: Experimental research. Bali Medical Journal, 13(1), 811–815. https://doi.org/10.15562/bmj.v13i1.4890

HTML
0

Total
0

Share

Search Panel

Budi Mulyawan
Google Scholar
Pubmed
BMJ Journal


Agung Dwi Wahyu Widodo
Google Scholar
Pubmed
BMJ Journal


Pepy Dwi Endraswari
Google Scholar
Pubmed
BMJ Journal