Skip to main content Skip to main navigation menu Skip to site footer

The mechanisms of coronary artery vasoconstriction upon hyperoxia: a mini-review

  • Muhammad Insani Ilman ,
  • Ivana Purnama Dewi ,
  • Yudi Her Oktaviono ,

Abstract

Oxygen supplementation is potentially harmful in patients with acute coronary syndrome as it may lead to hyperoxia-induced coronary vasoconstriction. This phenomenon may deteriorate the already poor coronary perfusion. The exact physiology mechanisms of how hyperoxia causes vasoconstriction are still not fully elucidated. Some hypotheses were proposed, among others: 1) reduced nitric oxide (NO) bioavailability due to increased reactive oxygen species (ROS) generation; 2) hyperoxia-induced ATP-sensitive potassium channel closure; 3) activation of smooth muscles’ oxygen-sensitive calcium channel; 4) increased endothelin-1 release; and 5) increased production of 20-hydroxyeicosatetraenoic acid (20-HETE). A decent understanding of this phenomenon will aid in more awareness and better clinical management.

References

  1. Singer M, Young PJ, Laffey JG, Asfar P, Taccone FS, Skrifvars MB, et al. Dangers of hyperoxia. Crit Care. 2021; 25: 1–15.
  2. Nedeljkovic ZS, Jacobs AK. Oxygen for ST-Segment-Elevation Myocardial Infarction Still Up in the Air. Circulation. 2015; 131: 2101–3.
  3. Cabello JB, Burls A, Emparanza JI, Bayliss SE, Quinn T. Oxygen therapy for acute myocardial infarction. Cochrane Database Syst Rev. 2016; 2016.
  4. Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015; 131: 2143–50.
  5. Smit B, Smulders YM, van der Wouden JC, Oudemans-van Straaten HM, Spoelstra-de Man AME. Hemodynamic effects of acute hyperoxia: Systematic review and meta-analysis. Crit Care. 2018; 22: 1–10.
  6. Bodetoft S, Carlsson M, Arheden H, Ekelund U. Effects of oxygen inhalation on cardiac output, coronary blood flow and oxygen delivery in healthy individuals, assessed with MRI. Eur J Emerg Med. 2011; 18: 25–30.
  7. McNulty PH, King N, Scott S, Hartman G, McCann J, Kozak M, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Am J Physiol - Hear Circ Physiol. 2005; 288: 1057–62.
  8. Guensch DP, Fischer K, Yamaji K, Luescher S, Ueki Y, Jung B, et al. Effect of hyperoxia on myocardial oxygenation and function in patients with stable multivessel coronary artery disease. J Am Heart Assoc. 2020; 9.
  9. Iscoe S, Beasley R, Fisher JA. Supplementary oxygen for nonhypoxemic patients: O 2much of a good thing? Crit Care. 2011; 15: 15–8.
  10. Moradkhan R, Sinoway LI. Revisiting the role of oxygen therapy in cardiac patients. J Am Coll Cardiol. 2010; 56: 1013–6.
  11. Zweier JL, Talukder MAH. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006; 70: 181–90.
  12. Xie LH, Chen F, Karagueuzian HS, Weiss JN. Oxidative stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ Res. 2009; 104: 79–86.
  13. Hofmann R, James SK, Svensson L, Witt N, Frick M, Lindahl B, et al. DETermination of the role of OXygen in suspected Acute Myocardial Infarction trial. Am Heart J. 2014; 167: 322–8.
  14. Collet JP, Thiele H, Barbato E, Bauersachs J, Dendale P, Edvardsen T, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021; 42: 1289–367.
  15. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018; 39: 119–77.
  16. Momen A, Mascarenhas V, Gahremanpour A, Gao Z, Moradkhan R, Kunselman A, et al. Coronary blood flow responses to physiological stress in humans. Am J Physiol - Hear Circ Physiol. 2009; 296: 854–61.
  17. Ottolenghi S, Sabbatini G, Brizzolari A, Samaja M, Chiumello D. Hyperoxia and oxidative stress in anesthesia and critical care medicine. Minerva Anestesiol. 2020; 86: 64–75.
  18. Tune J, Richmond K, Gorman M, Feigl E. Control of coronary blood flow during exercise. Exp Biol Med. 2002; 227: 238–250.
  19. Mouren S, Souktani R, Beaussier M, Abdenour L, Arthaud M, Duvelleroy M, et al. Mechanisms of coronary vasoconstriction induced by high arterial oxygen tension. Am J Physiol. 1997; 272: H67-75.
  20. Welsh DG, Jackson WF, Segal SS. Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: A role for L-type Ca2+ channels. Am J Physiol - Hear Circ Physiol. 1998; 274.
  21. Winegrad S, Henrion D, Rappaport L, Samuel JL. Self-protection by cardiac myocytes against hypoxia and hyperoxia. Circ Res. 1999; 85: 690–8.
  22. Jackson WF. Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action? J Physiol. 2016; 594: 5055–77.
  23. Hoopes SL, Garcia V, Edin ML, Schwartzman ML, Zeldin DC. Vascular actions of 20-HETE. Prostaglandins Other Lipid Mediat. 2015; 120: 9–16.
  24. Setiawan L EK, Adhipireno P, Budiwiyono I. Correlation between Leucocyte Count, Neutrophil Lymphocyte Ratio (NLR), C-reactive Protein (CRP) and Coronary Artery Stenosis Degree on Stable Coronary Artery Disease. Bali Med J. [Internet]. 2019 Jan. 26 [cited 2023 Aug. 24];8(1):259-63. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/1343
  25. Citradinata C, Widyastiti NS. The relationship of lactic acid, neutrophil lymphocyte ratio and monocyte lymphocyte ratio with the outcomes of coronary arterial disease patients following coronary artery bypass surgery. Bali Med J. [Internet]. 2019 Aug. 1 [cited 2023 Aug. 24];8(2):455-9. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/1422
  26. Fitrasanti BI, Onggo A, Sugirman W, Ciptawan B. Prevalence of cutaneous markers in coronary artery disease cases. Bali Med J. [Internet]. 2021 Jul. 31 [cited 2023 Aug. 24];10(2):877-80. Available from: https://www.balimedicaljournal.org/index.php/bmj/article/view/2531

How to Cite

Ilman, M. I., Ivana Purnama Dewi, & Yudi Her Oktaviono. (2023). The mechanisms of coronary artery vasoconstriction upon hyperoxia: a mini-review. Bali Medical Journal, 12(3), 2592–2594. https://doi.org/10.15562/bmj.v12i3.4730

HTML
1

Total
0

Share

Search Panel

Muhammad Insani Ilman
Google Scholar
Pubmed
BMJ Journal


Ivana Purnama Dewi
Google Scholar
Pubmed
BMJ Journal


Yudi Her Oktaviono
Google Scholar
Pubmed
BMJ Journal