Skip to main content Skip to main navigation menu Skip to site footer

Optimization of a local type rabbit model for arteriovenous fistula, focused on study neointimal hyperplasia

  • Yopie Afriandi Habibie ,
  • Cut Merry Sahara Putri ,
  • Putri Oktaviani Zulfa ,
  • Dessy Rakhmawati Emril ,
  • Azharuddin ,
  • Dedy Syahrizal ,
  • Fauzan Fajri ,
  • Riyan Ferdian ,
  • pdf  |
  • Published: 2023-05-01

Abstract

Link of Video Abstract: https://youtu.be/8kcI8mX5A6Y

Background: Hemodialysis vascular access dysfunction is a significant cause of morbidity and mortality in hemodialysis patients. Over the past decades, numerous animal models have been developed. However, there needs to be more animal model protocol with rabbits to investigate neointimal hyperplasia in the arteriovenous fistula. This study aimed to explore an alternative rabbit model using a wild-type local model for investigating neointimal hyperplasia in the arteriovenous fistula.

Methods: One local-type male rabbit performed arteriovenous fistula, in which the right carotid communis artery was anastomosed end-to-side to the right internal jugular vein. When examining vascular tissue, measurements were taken of the thicknesses of the tunica intima and tunica media, as well as the areas of the tunica intima and tunica media, vascular diameters, and vascular lumen areas.

Result: We successfully induced neointimal hyperplasia in local-type rabbits, indicated by increased tunica intima thickness after 28 days of the arteriovenous fistula procedure.

Conclusion: Optimation of the Rabbit model using a wild-type local model for investigating neointimal hyperplasia in arteriovenous fistula may be susceptible and considered as it is accessible and cost-effective besides producing the same outcome as a laboratory rabbit

References

  1. Bello AK, Okpechi IG, Osman MA, Cho Y, Htay H, Jha V, et al. Epidemiology of hemodialysis outcomes. Nat Rev Nephrol. 2022;18(6):378–395.
  2. Bin-ayesh HN, Alhussein SH, Alahmari NF, Alanzi RQ, alanaz IF, Almaimani RF, et al. Review on arteriovenous fistula techniques and complications. Entomology and Applied Science Letters. 2021;8(1):105–113.
  3. Chang TI, Chen CH, Hsieh HL, Chen CY, Hsu SC, Cheng HS, et al. Effects of cardiovascular medications on primary patency of hemodialysis arteriovenous fistula. Sci Rep. 2020;10(1):12135.
  4. Lee T, Haq NU. new developments in our understanding of neointimal hyperplasia. Adv Chronic Kidney Dis. 2015;22(6):431–437.
  5. Lee T, Roy-Chaudhury P. Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Adv Chronic Kidney Dis. 2009;16(5):329–338.
  6. Huijbregts HJT, Bots ML, Wittens CHA, Schrama YC, Moll FL, Blankestijn PJ. Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clinical Journal of the American Society of Nephrology. 2008;3(3):714–719.
  7. Ebert MLA, Schmidt VF, Pfaff L, von Thaden A, Kimm MA, Wildgruber M. Animal models of neointimal hyperplasia and restenosis. JACC Basic Transl Sci. 2021;6(11):900–917.
  8. Rotmans JI. Animal models for studying pathophysiology of hemodialysis access. Open Urol Nephrol J. 2014;7(1):14–21.
  9. Lemson MS, Daemen MJAP, Kitslaar PJEHM, Tordoir JHM. A new animal model to study intimal hyperplasia in arteriovenous fistulas. Journal of Surgical Research. 1999;85(1):51–58.
  10. Nath KA, Kanakiriya SKR, Grande JP, Croatt AJ, Katusic ZS. Increased venous proinflammatory gene expression and intimal hyperplasia in an aorto-caval fistula model in the rat. Am J Pathol. 2003;162(6):2079–2090.
  11. Croatt AJ, Grande JP, Hernandez MC, Ackerman AW, Katusic ZS, Nath KA. Characterization of a model of an arteriovenous fistula in the rat. Am J Pathol. 2010;176(5):2530–2541.
  12. Zheng C, Zhou Y, Huang C, Zhang Z, Liu Y, Xu Y. Establishment of a rat autogenous arteriovenous fistula model following 5/6 nephrectomy. Exp Ther Med. 2015;10(1):219–224.
  13. Lin T, Horsfield C, Robson MG. An arteriovenous fistula in the rat tail: a new model of hemodialysis access dysfunction. Kidney Int. 2008;74(4):528–531.
  14. Manning E, Skartsis N, Orta AM, Velazquez OC, Liu ZJ, Asif A, et al. A new arteriovenous fistula model to study the development of neointimal hyperplasia. J Vasc Res. 2012;49(2):123–131.
  15. Cai C, Zhao C, Kilari S, Sharma A, Singh AK, Simeon ML, et al. Experimental murine arteriovenous fistula model to study restenosis after transluminal angioplasty. Lab Anim (NY). 2020;49(11):320–334.
  16. Yang B, Shergill U, Fu AA, Knudsen B, Misra S. The mouse arteriovenous fistula model. Journal of Vascular and Interventional Radiology. 2009;20(7):946–950.
  17. Taniguchi R, Ono S, Isaji T, Gorecka J, Lee SR, Matsubara Y, et al. A mouse model of stenosis distal to an arteriovenous fistula recapitulates human central venous stenosis. JVS Vasc Sci. 2020;1:109–122.
  18. Wong CY, de Vries MR, Wang Y, van der Vorst JR, Vahrmeijer AL, van Zonneveld AJ, et al. A novel murine model of arteriovenous fistula failure: the surgical procedure in detail. J Vis Exp. 2016;(108): e53294.
  19. Chen C, Lumsden AB, Ofenloch JC, Noe B, Campbell EJ, Stratford PW, et al. Phosphorylcholine coating of ePTFE grafts reduces neointimal hyperplasia in canine model. Ann Vasc Surg. 1997;11(1):74–79.
  20. Krishnamoorthy MK, Banerjee RK, Wang Y, Zhang J, Roy AS, Khoury SF, et al. Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig AV fistula. Kidney Int. 2008;74(11):1410–1419.
  21. Kelly BS, Heffelfinger SC, Whiting JF, Miller MA, Reaves A, Armstrong J, et al. Aggressive venous neointimal hyperplasia in a pig model of arteriovenous graft stenosis. Kidney Int. 2002;62(6):2272–2280.
  22. Schwartz RS, Edwards WD, Bailey KR, Camrud AR, Jorgenson MA, Holmes DR. Differential neointimal response to coronary artery injury in pigs and dogs. Implications for restenosis models. Arterioscler Thromb. 1994;14(3):395–400.
  23. Kohler TR, Kirkman TR. Dialysis access failure: A sheep model of rapid stenosis. J Vasc Surg. 1999;30(4):744–751.
  24. Florescu MC, Foster KW, Sacks AR, Lof J, Stolze EA, Fry GM, et al. Sheep model of hemodialysis arteriovenous fistula using superficial veins. Semin Dial. 2015;28(6):687–691.
  25. Prichard HL, Manson RJ, DiBernardo L, Niklason LE, Lawson JH, Dahl SLM. An Early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J Cardiovasc Transl Res. 2011;4(5):674–682.
  26. Dahl SLM, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, et al. Readily available tissue-engineered vascular grafts. Sci Transl Med. 2011;3(68):68ra9.
  27. Mehrad H, Masoumi F, Zeinalizad L, Farhoudi M. Developing of a new rabbit carotid artery model of neointimal hyperplasia with severe stenosis: monitored by ultrasonography and histopathology. Canadian Journal of Cardiology. 2018;34(10):S165.
  28. Ebert MLA, Schmidt VF, Pfaff L, von Thaden A, Kimm MA, Wildgruber M. Animal models of neointimal hyperplasia and restenosis. JACC Basic Transl Sci. 2021;6(11):900–917.
  29. Thomas B, Bhat K, Mapara M. Rabbit as an animal model for experimental research. Dent Res J (Isfahan). 2012;9(1):111.
  30. Lee T, Roy-Chaudhury P. Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Adv Chronic Kidney Dis. 2009;16(5):329–338.
  31. Dandanah MA, Budiono B, Puruhito I. Scoring predictor for successful of arteriovenous fistulas as vascular access in hemodialysis patients: PAVAS score. Bali Med J. 2020;9(3):613-618.
  32. Suhartono R, Mochtar CA, Alwi I, Lydia A, Kekalih A, Soetikno V, Nugroho TD. Patency rate difference of the arteriovenous fistula with and without pre-anastomosis balloon dilatation in chronic kidney disease patients. Bali Med J. 2022;11(3):1259-1261.
  33. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. journal of the american society of nephrology. 2006;17(4):1112–1127.
  34. Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, et al. Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol Ther. 2015;146:104–119.

How to Cite

Habibie, Y. A. ., Putri, C. M. S. ., Zulfa, P. O. ., Emril, D. R., Azharuddin, Syahrizal, D. ., Fajri, F. ., & Ferdian, R. . (2023). Optimization of a local type rabbit model for arteriovenous fistula, focused on study neointimal hyperplasia. Bali Medical Journal, 12(2), 1426–1430. Retrieved from https://blog.balimedicaljournal.org/index.php/bmj/article/view/4459

HTML
0

Total
0

Share

Search Panel

Yopie Afriandi Habibie
Google Scholar
Pubmed
BMJ Journal


Cut Merry Sahara Putri
Google Scholar
Pubmed
BMJ Journal


Putri Oktaviani Zulfa
Google Scholar
Pubmed
BMJ Journal


Dessy Rakhmawati Emril
Google Scholar
Pubmed
BMJ Journal


Azharuddin
Google Scholar
Pubmed
BMJ Journal


Dedy Syahrizal
Google Scholar
Pubmed
BMJ Journal


Fauzan Fajri
Google Scholar
Pubmed
BMJ Journal


Riyan Ferdian
Google Scholar
Pubmed
BMJ Journal