Skip to main content Skip to main navigation menu Skip to site footer

Effect of dexmedetomidine administration on malondialdehyde levels in lower extremity surgery using tourniquets

  • Bayu Wijanarko ,
  • Prananda Surya Airlangga ,
  • Mariza Fitriati ,
  • Christrijogo Sumartono ,
  • Prihatma Kriswidyatomo ,
  • Pudji Lestari ,


Introduction: The use of a tourniquet in lower extremity surgery can help surgeons optimize the surgical field. However, tourniquet inflation may create ischemic conditions in the extremity, and tourniquet deflation may pose a risk of ischemic reperfusion injury (IRI). Ischemic conditions can increase the production of reactive oxidative stress (ROS), which, if it occurs simultaneously with IRI, will produce malondialdehyde (MDA), a toxic metabolite. The prolonged use of tourniquets can cause damage to the local skin tissue at the tourniquet inflation and poses a risk of IRI to other organs. This study aims to observe the effect of dexmedetomidine administration on malondialdehyde levels in lower extremity surgery using tourniquets.

Methods: This study is an observational study with a prospective cohort design to measure malondialdehyde levels in lower extremity surgery using tourniquets. When the data were normally distributed, a statistical test was performed using an independent sample t-test to compare the demographic data of the two groups. To compare the results of the observation after the induction, 15 and 120 minutes after the release of the tourniquets, a repeated measures ANOVA was performed when the data were normally distributed. Then, to examine the correlation between variables, Spearman's correlation test was applied when the data were not normally distributed.

Results: In this study, almost all the subjects in the isoflurane and dex-iso groups had no significantly different characteristics, and also showed no effect of tourniquet pressure on malondialdehyde levels.

Conclusion: Based on statistical analysis and discussion of the effect of dexmedetomidine administration on malondialdehyde levels in lower extremity surgery using tourniquets, it can be concluded that there was no statistically significant effect of dexmedetomidine administration on malondialdehyde levels in lower extremity surgery using tourniquets.


  1. Coudert MM. The use of tourniquet in limb surgery. University of Zagreb. 2016;1:1–21.
  2. Leurcharusmee P, Sawaddiruk P, Punjasawadwong Y, Chattipakorn N, Chattipakorn SC. The possible pathophysiological outcomes and mechanisms of tourniquet-induced ischemia-reperfusion injury during total knee arthroplasty. Oxidative Medicine and Cellular Longevity. 2018. doi: 10.1155/2018/8087598
  3. Halladin NL, Ekeløf S, Alamili M, Bendtzen K, Lykkesfeldt J, Rosenberg J, Gögenur I. Lower limb ischaemia and reperfusion injury in healthy volunteers measured by oxidative and inflammatory biomarkers. Perfusion (United Kingdom). 2015;30(1):64–70. doi: 10.1177/0267659114530769
  4. Bianco-Batlles MD, Sosunov A, Polin RA, Ten VS. Systemic inflammation following hind-limb ischemia-reperfusion affects brain in neonatal mice. Developmental Neuroscience. 2009;30(6):367–73. doi: 10.1159/000164686
  5. Laisalmi-Kokki M, Pesonen E, Kokki H, Valta P, Pitkänen M, Teppo AM, Honkanen E, Lindgren L. Potentially detrimental effects of N-acetylcysteine on renal function in knee arthroplasty. Free Radical Research, 2009;43(7):691–6. doi: 10.1080/10715760902998206
  6. Omer K, Nermin G, Ali A, Mehmet A, Unal D, Sezen KS, Hakan K. Tourniquet-induced ischaemia-reperfusion injury: the comparison of antioxidative effects of small-dose propofol and ketamine. Brazilian Journal of Anesthesiology (English Edition). 2017;67(3):246–50. doi: 10.1016/j.bjane.2015.09.005
  7. Zalunardo MP, Serafino D, Szelloe P, Weisser F, Zollinger A, Seifert B, Pasch T. Preoperative clonidine blunts hyperadrenergic and hyperdynamic responses to prolonged tourniquet pressure during general anesthesia. Anesthesia and Analgesia. 2002;94(3):615–8. doi: 10.1097/00000539-200203000-00025
  8. DOI: 10.1097/00000539-200203000-00025
  9. Kutanis D, Erturk E, Besir A, Demirci Y, Kayir S, Akdogan A, Kural BV, Bahat Z, Canyilmaz E, Kara H. Dexmedetomidine acts as an oxidative damage prophylactic in rats exposed to ionizing radiation. Journal of Clinical Anesthesia. 2016;34:577–85. doi: 10.1016/j.jclinane.2016.06.031
  10. Kim SH, Kim DH, Shin S, Kim SJ, Kim TL, Choi YS. Effects of dexmedetomidine on inflammatory mediators after tourniquet-induced ischemia-reperfusion injury: a randomized, double-blinded, controlled study. Minerva Anestesiologica. 2019;85(3):279–87. doi: 10.23736/S0375-9393.18.13015-X
  11. DOI: 10.23736/S0375-9393.18.13015-X
  12. Bostankolu E, Ayoglu H, Yurtlu S, Okyay RD, Erdogan G, Deniz Y, Hanci V, Can M, Turan IO. Dexmedetomidine did not reduce the effects of tourniquet-induced ischemia-reperfusion injury during general anesthesia. The Kaohsiung Journal of Medical Sciences. 2013;29(2):75–81. doi: 10.1016/j.kjms.2012.08.013
  13. Zhang XY, Liu ZM, Wen SH, Li YS, Li Y, Yao X, Huang WQ, Liu KX. Dexmedetomidine administration before, but not after, ischemia attenuates intestinal injury induced by intestinal ischemia-reperfusion in rats. Anesthesiology. 2012;116(5):1035–46. doi: 10.1097/ALN.0b013e3182503964
  14. Dillon JP, Laing AJ, Chandler JRS, Wang JH, McGuinness A, Redmond HP. Pravastatin attenuates tourniquet-induced skeletal muscle ischemia reperfusion injury. Acta Orthopaedica. 2006;77(1):27–32. doi: 10.1080/17453670610045669
  15. Weiskopf RB, Collard CD, Gelman S. Prevention of Ischemia – Reperfusion Injury. 2001;6:1133–8.
  16. Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. Journal of Lipid Research. 1998;39(8):1529–42. doi: 10.1016/s0022-2275(20)32182-9
  17. Fukai M, Hayashi T, Yokota R, Shimamura T, Suzuki T, Taniguchi M, Matsushita M, Furukawa H, Todo S. Lipid peroxidation during ischemia depends on ischemia time in warm ischemia and reperfusion of rat liver. Free Radical Biology and Medicine. 2005;38(10):1372–81. doi: 10.1016/j.freeradbiomed.2005.02.004
  18. Mueangson O, Vongvaivanichakul P, Kamdee K, Jansakun C, Chulrik W, Pongpanitanont P, Sathirapanya P, Chunglok W. Malondialdehyde as a useful biomarker of low hand grip strength in community-dwelling stroke patients. International Journal of Environmental Research and Public Health. 2020;17(21):1–12. doi: 10.3390/ijerph17217918
  19. DOI: 10.3390/ijerph17217918
  20. Masri BA, Eisen A, Duncan CP, McEwen JA. Tourniquet-induced nerve compression injuries are caused by high pressure levels and gradients – a review of the evidence to guide safe surgical, pre-hospital and blood flow restriction usage. BMC Biomedical Engineering. 2020;2(1):1–8. doi: 10.1186/s42490-020-00041-5
  21. Bellanti F, Mirabella L, Mitarotonda D, Blonda M, Tamborra R, Cinnella G, Fersini A, Ambrosi A, Dambrosio M, Vendemiale G, Serviddio G. Propofol but not sevoflurane prevents mitochondrial dysfunction and oxidative stress by limiting HIF-1α activation in hepatic ischemia/reperfusion injury. Free Radical Biology and Medicine. 2016;96:323–33. doi: 10.1016/j.freeradbiomed.2016.05.002
  22. Li S, Lei Z, Yang X, Zhao M, Hou Y, Wang D, Tang S, Li J, Yu J. Propofol protects myocardium from ischemia/reperfusion injury by inhibiting ferroptosis through the akt/p53 signaling pathway. Frontiers in Pharmacology. 2022;13(March):1–11. doi: 10.3389/fphar.2022.841410
  23. Li Y, Zhong D, Lei L, Jia Y, Zhou H, Yang B. Propofol prevents renal ischemia-reperfusion injury via inhibiting the oxidative stress pathways. Cellular Physiology and Biochemistry. 2015;37(1):14–26. doi: 10.1159/000430329
  24. Kaptanoglu E, Sen S, Beskonakli E, Surucu HS, Tuncel M, Kilinc K, Taskin Y. Antioxidant actions and early ultrastructural findings of thiopental and propofol in experimental spinal cord injury. Journal of Neurosurgical Anesthesiology. 2002;14(2):114–22. doi: 10.1097/00008506-200204000-00005
  25. Ucar M, Ozgül U, Polat A, Toprak HI, Erdogan MA, Aydogan MS, Durmus M, Ersoy MO. Comparison of antioxidant effects of isoflurane and propofol in patients undergoing donor hepatectomy. Transplantation Proceedings. 2015;47(2):469–72. doi: 10.1016/j.transproceed.2014.11.043
  26. Yagmurdur H, Cakan T, Bayrak A, Arslan M, Baltaci B, Inan N, Kilinc K. The effects of etomidate, thiopental, and propofol in induction on hypoperfusion-reperfusion phenomenon during laparoscopic cholecystectomy. Acta Anaesthesiologica Scandinavica. 2004;48(6):772–7. doi: 10.1111/j.0001-5172.2004.00417.x
  27. Lee YM, Song BC, Yeum KJ. Impact of volatile anesthetics on oxidative stress and inflammation. BioMed Research International. 2015. doi: 10.1155/2015/242709
  28. Schallner N, Ulbrich F, Engelstaedter H, Biermann J, Auwaerter V, Loop T, Goebel U. Isoflurane but not sevoflurane or desflurane aggravates injury to neurons in vitro and in vivo via p75NTR-NF-κB activation. Anesthesia and Analgesia. 2014;119(6):1429–41. doi: 10.1213/ANE.0000000000000488
  29. Dal Molin SZF, Kruel CRP, De Fraga RS, Alboim C, De Oliveira JR, Alvares-Da-silva MR. Differential protective effects of anaesthesia with sevoflurane or isoflurane An animal experimental model simulating liver transplantation. European Journal of Anaesthesiology. 2014;31(12):695–700. doi: 10.1097/EJA.0000000000000127
  30. Karabiyik, L., Şardaş, S., Polat, U., Kocabaş, N. A., & Karakaya, A. E. Comparison of genotoxicity of sevoflurane and isoflurane in human lymphocytes studied in vivo using the comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2001: 492(1–2), 99–107. doi: 10.1016/s1383-5718(01)00159-0
  31. Yazdi, A. P., Bameshki, A., Salehi, M., Kazemzadeh, G., Razavi, M. S., Rahmani, S., & Hashemy, S. I. The effect of spinal and general anesthesia on serum lipid peroxides and total antioxidant capacity in diabetic patients with lower limb amputation surgery. Archives of Bone and Joint Surgery, 2018: 6(4), 312–317. doi: 10.22038/abjs.2017.20994.1541
  32. Yagmurdur, H., Ozcan, N., Dokumaci, F., Kilinc, K., Yilmaz, F., & Basar, H. Dexmedetomidine Reduces the Ischemia-Reperfusion Injury Markers During Upper Extremity Surgery With Tourniquet. Journal of Hand Surgery, 2008: 33(6), 941–947. doi: 10.1016/j.jhsa.2008.01.014
  33. Pagehgiri HD, Puruhito I, Aditiawarman, Lestari P, Sembiring YE, Jiwangga D, Hakim AR, Aryananda RA. The role of transdermal carbon dioxide on changes in malondialdehyde levels as a marker of ischemia-reperfusion injury in patients with placenta accreta spectrum underwent temporary abdominal aortic cross-clamping as an adjunct procedure during cesarean hysterectomy. Bali Med J. [Internet]. 2022 Aug. 31 [cited 2023 May 3];11(2):1023-9. Available from:
  34. Maharani M, Dewi PK, Prihatningtias R, Wildan A, Nugroho T, Limijadi EKS, Rahmi FL. Aqueous Humour Malondialdehyde Level as Oxidative Stress Marker In Types Of Glaucoma. Bali Med J. [Internet]. 2022 Mar. 14 [cited 2023 May 3];11(1):103-5. Available from:
  35. Wijanarko B, Christrijogo Sumartono, Belindo Wirabuana, Hardiono, Bambang Pujo Semedi, Prananda Surya Airlangga. Effects of Tourniquet Inflation on Blood Pressure, Mean Arterial Pressure, and Pulse Rate during the Maintenance of Anesthesia Using a Combination of Dexmedetomidine and Isoflurane for Patients Undergoing Lower Extremity Surgery. Bali Med J. [Internet]. 2023 Mar. 27 [cited 2023 May 3];12(1):1033-40. Available from:

How to Cite

Wijanarko, B., Airlangga, P. S. ., Fitriati, M. ., Sumartono, C. ., Kriswidyatomo, P. ., & Lestari, P. . (2023). Effect of dexmedetomidine administration on malondialdehyde levels in lower extremity surgery using tourniquets. Bali Medical Journal, 12(2), 1459–1465.




Search Panel

Bayu Wijanarko
Google Scholar
BMJ Journal

Prananda Surya Airlangga
Google Scholar
BMJ Journal

Mariza Fitriati
Google Scholar
BMJ Journal

Christrijogo Sumartono
Google Scholar
BMJ Journal

Prihatma Kriswidyatomo
Google Scholar
BMJ Journal

Pudji Lestari
Google Scholar
BMJ Journal