Skip to main content Skip to main navigation menu Skip to site footer

Evidence of Dioxin as Endocrine Disrupting Chemicals in the Development of Endometriosis: A Narrative Review

  • Shafira Meidyana ,

Abstract

Endometriosis is one of the most frequent abnormalities in women with infertility. Endocrine disruptors, such as dioxin, are considered to affect the development of endometriosis. Various studies have been done to find an association between dioxin and endometriosis, but the results are conflicting. Hence, this study aims to systematically review existing epidemiological studies on exposure to dioxin and the development of endometriosis.

References

  1. Kennedy S, Bergqvist A, Chapron C, D'Hooghe T, Dunselman G, Greb R, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005;20(10):2698–704. Available from: http://dx.doi.org/10.1093/humrep/dei135
  2. Nnoaham KE, Hummelshoj L, Webster P, d'Hooghe T, de Cicco Nardone F, de Cicco Nardone C, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011/06/30. 2011;96(2):366-373.e8. Available from: https://pubmed.ncbi.nlm.nih.gov/21718982
  3. Rogers PAW, D'Hooghe TM, Fazleabas A, Gargett CE, Giudice LC, Montgomery GW, et al. Priorities for endometriosis research: recommendations from an international consensus workshop. Reprod Sci. 2009/02/05. 2009;16(4):335–46. Available from: https://pubmed.ncbi.nlm.nih.gov/19196878
  4. Adamson GD, Kennedy S, Hummelshoj L. Creating Solutions in Endometriosis: Global Collaboration through the World Endometriosis Research Foundation. J Endometr. 2010;2(1):3–6. Available from: http://dx.doi.org/10.1177/228402651000200102
  5. Taylor HS, Kotlyar AM, Flores VA. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet. 2021;397(10276):839–52. Available from: http://dx.doi.org/10.1016/s0140-6736(21)00389-5
  6. Du H, Taylor HS. Contribution of Bone Marrow-Derived Stem Cells to Endometrium and Endometriosis. Stem Cells. 2007;25(8):2082–6. Available from: http://dx.doi.org/10.1634/stemcells.2006-0828
  7. Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–98. Available from: https://pubmed.ncbi.nlm.nih.gov/20573927
  8. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011/08/27. 2011;127(3–5):204–15. Available from: https://pubmed.ncbi.nlm.nih.gov/21899826
  9. Rumph JT, Stephens VR, Archibong AE, Osteen KG, Bruner-Tran KL. Environmental Endocrine Disruptors and Endometriosis. Adv Anat Embryol Cell Biol. 2020;232:57–78. Available from: https://pubmed.ncbi.nlm.nih.gov/33278007
  10. Anger L. D. The link between environmental toxicant exposure and endometriosis. Front Biosci. 2008;13(13):1578. Available from: http://dx.doi.org/10.2741/2782
  11. Eskenazi B, Mocarelli P, Warner M, Samuels S, Vercellini P, Olive D, et al. Serum dioxin concentrations and endometriosis: a cohort study in Seveso, Italy. Environ Health Perspect. 2002;110(7):629–34. Available from: https://pubmed.ncbi.nlm.nih.gov/12117638
  12. Viganò P, Parazzini F, Somigliana E, Vercellini P. Endometriosis: epidemiology and aetiological factors. Best Pract & Res Clin Obstet & Gynaecol. 2004;18(2):177–200. Available from: http://dx.doi.org/10.1016/j.bpobgyn.2004.01.007
  13. Williams CE, Nakhal RS, Hall-Craggs MA, Wood D, Cutner A, Pattison SH, et al. Transverse vaginal septae: management and long-term outcomes. BJOG An Int J Obstet & Gynaecol. 2014;121(13):1653–8. Available from: http://dx.doi.org/10.1111/1471-0528.12899
  14. D’Hooghe TM, Bambra CS, Raeymaekers BM, De Jonge I, Lauweryns JM, Koninckx PR. Intrapelvic injection of menstrual endometrium causes endometriosis in baboons (Papio cynocephalus and Papio anubis). Am J Obstet Gynecol. 1995;173(1):125–34. Available from: http://dx.doi.org/10.1016/0002-9378(95)90180-9
  15. Taylor HS. Endometrial Cells Derived From Donor Stem Cells in Bone Marrow Transplant Recipients. JAMA. 2004;292(1):81. Available from: http://dx.doi.org/10.1001/jama.292.1.81
  16. Chen P, Mamillapalli R, Habata S, Taylor HS. Endometriosis stromal cells induce bone marrow mesenchymal stem cell differentiation and PD-1 expression through paracrine signaling. Mol Cell Biochem. 2021;476(4):1717–27. Available from: http://dx.doi.org/10.1007/s11010-020-04012-1
  17. Chen P, Mamillapalli R, Habata S, Taylor HS. Endometriosis Cell Proliferation Induced by Bone Marrow Mesenchymal Stem Cells. Reprod Sci. 2020;28(2):426–34. Available from: http://dx.doi.org/10.1007/s43032-020-00294-4
  18. Konrad L, Dietze R, Kudipudi PK, Horné F, Meinhold-Heerlein I. Endometriosis in MRKH cases as a proof for the coelomic metaplasia hypothesis? Reproduction. 2019;158(2):R41–7. Available from: http://dx.doi.org/10.1530/rep-19-0106
  19. Mikhaleva LM, Radzinsky VE, Orazov MR, Khovanskaya TN, Sorokina A V, Mikhalev SA, et al. Current Knowledge on Endometriosis Etiology: A Systematic Review of Literature. Int J Womens Health. 2021;13:525–37. Available from: https://pubmed.ncbi.nlm.nih.gov/34104002
  20. Matsuura K, Ohtake H, Katabuchi H, Okamura H. Coelomic Metaplasia Theory of Endometriosis: Evidence from in vivo Studies and an in vitro Experimental Model. Gynecol Obstet Invest. 1999;47(Suppl. 1):18–22. Available from: http://dx.doi.org/10.1159/000052855
  21. Marquardt RM, Kim TH, Shin J-H, Jeong J-W. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci. 2019;20(15):3822. Available from: https://pubmed.ncbi.nlm.nih.gov/31387263
  22. Fung JN, Mortlock S, Girling JE, Holdsworth-Carson SJ, Teh WT, Zhu Z, et al. Genetic regulation of disease risk and endometrial gene expression highlights potential target genes for endometriosis and polycystic ovarian syndrome. Sci Rep. 2018;8(1):11424. Available from: https://pubmed.ncbi.nlm.nih.gov/30061686
  23. Izawa M. Epigenetic aberration of gene expression in endometriosis. Front Biosci. 2013;E5(3):900–10. Available from: http://dx.doi.org/10.2741/e669
  24. Mortlock S, Restuadi R, Levien R, Girling JE, Holdsworth-Carson SJ, Healey M, et al. Genetic regulation of methylation in human endometrium and blood and gene targets for reproductive diseases. Clin Epigenetics. 2019;11(1):49. Available from: https://pubmed.ncbi.nlm.nih.gov/30871624
  25. Naqvi H, Ilagan Y, Krikun G, Taylor HS. Altered genome-wide methylation in endometriosis. Reprod Sci. 2014/04/30. 2014;21(10):1237–43. Available from: https://pubmed.ncbi.nlm.nih.gov/24784717
  26. Sha G, Wu D, Zhang L, Chen X, Lei M, Sun H, et al. Differentially expressed genes in human endometrial endothelial cells derived from eutopic endometrium of patients with endometriosis compared with those from patients without endometriosis. Hum Reprod. 2007;22(12):3159–69. Available from: http://dx.doi.org/10.1093/humrep/dem266
  27. Yotova I, Hsu E, Do C, Gaba A, Sczabolcs M, Dekan S, et al. Epigenetic Alterations Affecting Transcription Factors and Signaling Pathways in Stromal Cells of Endometriosis. PLoS One. 2017;12(1):e0170859–e0170859. Available from: https://pubmed.ncbi.nlm.nih.gov/28125717
  28. Houshdaran S, Oke AB, Fung JC, Vo KC, Nezhat C, Giudice LC. Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 2020;16(6):e1008601–e1008601. Available from: https://pubmed.ncbi.nlm.nih.gov/32555663
  29. Reis FM, Petraglia F, Taylor RN. Endometriosis: hormone regulation and clinical consequences of chemotaxis and apoptosis. Hum Reprod Update. 2013/03/28. 2013;19(4):406–18. Available from: https://pubmed.ncbi.nlm.nih.gov/23539633
  30. Wang X-Q, Yu J, Luo X-Z, Shi Y-L, Wang Y, Wang L, et al. The high level of RANTES in the ectopic milieu recruits macrophages and induces their tolerance in progression of endometriosis. J Mol Endocrinol. 2010;45(5):291–9. Available from: http://dx.doi.org/10.1677/jme-09-0177
  31. Khorram O, Taylor RN, Ryan IP, Schall TJ, Landers D V. Peritoneal fluid concentrations of the cytokine RANTES correlate with the severity of endometriosis. Am J Obstet Gynecol. 1993;169(6):1545–9. Available from: http://dx.doi.org/10.1016/0002-9378(93)90433-j
  32. Borrelli GM, Carvalho KI, Kallas EG, Mechsner S, Baracat EC, Abrão MS. Chemokines in the pathogenesis of endometriosis and infertility. J Reprod Immunol. 2013;98(1–2):1–9. Available from: http://dx.doi.org/10.1016/j.jri.2013.03.003
  33. McKinnon BD, Kocbek V, Nirgianakis K, Bersinger NA, Mueller MD. Kinase signalling pathways in endometriosis: potential targets for non-hormonal therapeutics. Hum Reprod Update. 2016;22(3):382–403. Available from: http://dx.doi.org/10.1093/humupd/dmv060
  34. Morino-Koga S, Uchi H, Tsuji G, Takahara M, Kajiwara J, Hirata T, et al. Reduction of CC-chemokine ligand 5 by aryl hydrocarbon receptor ligands. J Dermatol Sci. 2013;72(1):9–15. Available from: http://dx.doi.org/10.1016/j.jdermsci.2013.04.031
  35. Sun X-H. Protective effects of marrubiin improve endometriosis through suppression of the expression of RANTES. Mol Med Rep. 2017;16(3):3339–44. Available from: http://dx.doi.org/10.3892/mmr.2017.6969
  36. Kolahdouz-Mohammadi R, Shidfar F, Khodaverdi S, Arablou T, Heidari S, Rashidi N, et al. Resveratrol treatment reduces expression of MCP-1, IL-6, IL-8 and RANTES in endometriotic stromal cells. J Cell Mol Med. 2020/12/15. 2021;25(2):1116–27. Available from: https://pubmed.ncbi.nlm.nih.gov/33325132
  37. Caserta D, Maranghi L, Mantovani A, Marci R, Maranghi F, Moscarini M. Impact of endocrine disruptor chemicals in gynaecology. Hum Reprod Update. 2007;14(1):59–72. Available from: http://dx.doi.org/10.1093/humupd/dmm025
  38. Hornung D, Ryan IP, Chao VA, Vigne J-L, Schriock ED, Taylor RN. Immunolocalization and Regulation of the Chemokine RANTES in Human Endometrial and Endometriosis Tissues and Cells1. J Clin Endocrinol & Metab. 1997;82(5):1621–8. Available from: http://dx.doi.org/10.1210/jcem.82.5.3919
  39. Hornung D. Chemokine bioactivity of RANTES in endometriotic and normal endometrial stromal cells and peritoneal fluid. Mol Hum Reprod. 2001;7(2):163–8. Available from: http://dx.doi.org/10.1093/molehr/7.2.163
  40. Harada T. The role of NF-kappaB in endometriosis. Front Biosci. 2012;S4(4):1213–34. Available from: http://dx.doi.org/10.2741/s327
  41. González-Ramos R, Donnez J, Defrère S, Leclercq I, Squifflet J, Lousse J-C, et al. Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. MHR Basic Sci Reprod Med. 2007;13(7):503–9. Available from: http://dx.doi.org/10.1093/molehr/gam033
  42. Lousse J-C, Van Langendonckt A, González-Ramos R, Defrère S, Renkin E, Donnez J. Increased activation of nuclear factor-kappa B (NF-κB) in isolated peritoneal macrophages of patients with endometriosis. Fertil Steril. 2008;90(1):217–20. Available from: http://dx.doi.org/10.1016/j.fertnstert.2007.06.015
  43. Defrère S, González-Ramos R, Lousse J-C, Colette S, Donnez O, Donnez J, et al. Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis. Histol Histopathol. 2011;26(8):1083–92.
  44. Wieser F, Vigne J-L, Ryan I, Hornung D, Djalali S, Taylor RN. Sulindac Suppresses Nuclear Factor-κB Activation and RANTES Gene and Protein Expression in Endometrial Stromal Cells from Women with Endometriosis. J Clin Endocrinol & Metab. 2005;90(12):6441–7. Available from: http://dx.doi.org/10.1210/jc.2005-0972
  45. Lebovic DI. IL-1 Induction of RANTES (Regulated upon Activation, Normal T Cell Expressed and Secreted) Chemokine Gene Expression in Endometriotic Stromal Cells Depends on a Nuclear Factor- B Site in the Proximal Promoter. J Clin Endocrinol & Metab. 2001;86(10):4759–64. Available from: http://dx.doi.org/10.1210/jc.86.10.4759
  46. Akoum A, Lemay A, Maheux R. Estradiol and Interleukin-1β Exert a Synergistic Stimulatory Effect on the Expression of the Chemokine Regulated upon Activation, Normal T Cell Expressed, and Secreted in Endometriotic Cells. J Clin Endocrinol & Metab. 2002;87(12):5785–92. Available from: http://dx.doi.org/10.1210/jc.2002-020106
  47. Afshar Y, Hastings J, Roqueiro D, Jeong J-W, Giudice LC, Fazleabas AT. Changes in eutopic endometrial gene expression during the progression of experimental endometriosis in the baboon, Papio anubis. Biol Reprod. 2013;88(2):44. Available from: https://pubmed.ncbi.nlm.nih.gov/23284138
  48. Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, et al. Gene Expression Analysis of Endometrium Reveals Progesterone Resistance and Candidate Susceptibility Genes in Women with Endometriosis. Endocrinology. 2007;148(8):3814–26. Available from: http://dx.doi.org/10.1210/en.2006-1692
  49. Kim TH, Yu Y, Luo L, Lydon JP, Jeong J-W, Kim JJ. Activated AKT pathway promotes establishment of endometriosis. Endocrinology. 2014/02/26. 2014;155(5):1921–30. Available from: https://pubmed.ncbi.nlm.nih.gov/24605828
  50. Matsuzaki S, Darcha C. Co-operation between the AKT and ERK signaling pathways may support growth of deep endometriosis in a fibrotic microenvironment in vitro†. Hum Reprod. 2015;30(7):1606–16. Available from: http://dx.doi.org/10.1093/humrep/dev108
  51. MĂLUȚAN AM, DRUGAN T, CIORTEA R, BUCURI C, RADA MP, MIHU D. Endometriosis-associated changes in serum levels of interferons and chemokines. TURKISH J Med Sci. 2017;47:115–22. Available from: http://dx.doi.org/10.3906/sag-1507-185
  52. Yu J, Wang Y, Zhou W-H, Wang L, He Y-Y, Li D-J. Combination of estrogen and dioxin is involved in the pathogenesis of endometriosis by promoting chemokine secretion and invasion of endometrial stromal cells. Hum Reprod. 2008;23(7):1614–26. Available from: http://dx.doi.org/10.1093/humrep/den125
  53. Fowler PA, Bellingham M, Sinclair KD, Evans NP, Pocar P, Fischer B, et al. Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Mol Cell Endocrinol. 2012;355(2):231–9. Available from: http://dx.doi.org/10.1016/j.mce.2011.10.021
  54. Pocar P, Fischer B, Klonisch T, Hombach-Klonisch S. Molecular interactions of the aryl hydrocarbon receptor and its biological and toxicological relevance for reproduction. Reproduction. 2005;129(4):379–89. Available from: http://dx.doi.org/10.1530/rep.1.00294
  55. Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci. 2011/09/09. 2011;124(1):1–22. Available from: https://pubmed.ncbi.nlm.nih.gov/21908767
  56. IGARASHI T, OSUGA Y, TSUTSUMI O, MOMOEDA M, ANDO K, MATSUMI H, et al. Expression of Ah Receptor and Dioxin-Related Genes in Human Uterine Endometrium in Women with or without Endometriosis. Endocr J. 1999;46(6):765–72. Available from: http://dx.doi.org/10.1507/endocrj.46.765
  57. Sorg O. AhR signalling and dioxin toxicity. Toxicol Lett. 2014;230(2):225–33. Available from: http://dx.doi.org/10.1016/j.toxlet.2013.10.039
  58. Zhao D. Dioxin stimulates RANTES expression in an in-vitro model of endometriosis. Mol Hum Reprod. 2002;8(9):849–54. Available from: http://dx.doi.org/10.1093/molehr/8.9.849
  59. Mariuzzi L, Domenis R, Orsaria M, Marzinotto S, Londero AP, Bulfoni M, et al. Functional expression of aryl hydrocarbon receptor on mast cells populating human endometriotic tissues. Lab Invest. 2016/06/27. 2016;96(9):959–71. Available from: https://pubmed.ncbi.nlm.nih.gov/27348627
  60. Olšarová K, Mishra GD. Early life factors for endometriosis: a systematic review. Hum Reprod Update. 2020;26(3):412–22. Available from: http://dx.doi.org/10.1093/humupd/dmaa002
  61. Dai Y, Li X, Shi J, Leng J. A review of the risk factors, genetics and treatment of endometriosis in Chinese women: a comparative update. Reprod Health. 2018;15(1):82. Available from: https://pubmed.ncbi.nlm.nih.gov/29783992
  62. Missmer SA. Incidence of Laparoscopically Confirmed Endometriosis by Demographic, Anthropometric, and Lifestyle Factors. Am J Epidemiol. 2004;160(8):784–96. Available from: http://dx.doi.org/10.1093/aje/kwh275
  63. Hsu AL, Sinaii N, Segars J, Nieman LK, Stratton P. Relating pelvic pain location to surgical findings of endometriosis. Obstet Gynecol. 2011;118(2 Pt 1):223–30. Available from: https://pubmed.ncbi.nlm.nih.gov/21775836
  64. Karmon A, Hailpern SM, Neal-Perry G, Green RR, Santoro N, Polotsky AJ. Association of ethnicity with involuntary childlessness and perceived reasons for infertility: baseline data from the Study of Women's Health Across the Nation (SWAN). Fertil Steril. 2011/09/28. 2011;96(5):1200-5.e1. Available from: https://pubmed.ncbi.nlm.nih.gov/21958690
  65. Mowers EL, Lim CS, Skinner B, Mahnert N, Kamdar N, Morgan DM, et al. Prevalence of Endometriosis During Abdominal or Laparoscopic Hysterectomy for Chronic Pelvic Pain. Obstet & Gynecol. 2016;127(6):1045–53. Available from: http://dx.doi.org/10.1097/aog.0000000000001422
  66. Bougie O, Healey J, Singh SS. Behind the times: revisiting endometriosis and race. Am J Obstet Gynecol. 2019;221(1):35.e1-35.e5. Available from: http://dx.doi.org/10.1016/j.ajog.2019.01.238
  67. Wu Z, Yuan M, Li Y, Fu F, Ma W, Li H, et al. Analysis of WNT4 polymorphism in Chinese Han women with endometriosis. Reprod Biomed Online. 2015;30(4):415–20. Available from: http://dx.doi.org/10.1016/j.rbmo.2014.12.010
  68. Chen X-P, Xu D-F, Xu W-H, Yao J, Fu S-M. Glutathione-S-transferases M1/T1 gene polymorphisms and endometriosis: a meta-analysis in Chinese populations. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2015;31(11):840–5.
  69. Feng Y, Wu Y-Y, Li L, Luo Z-J, Lin Z, Zhou Y-H, et al. The codon 72 polymorphism of the TP53 gene and endometriosis risk: a meta-analysis. Reprod Biomed Online. 2015;31(3):320–6. Available from: http://dx.doi.org/10.1016/j.rbmo.2015.05.017
  70. Wei Z, Zhang M, Zhang X, Yi M, Xia X, Fang X. NAT2 gene polymorphisms and endometriosis risk: A PRISMA-compliant meta-analysis. PLoS One. 2019;14(12):e0227043–e0227043. Available from: https://pubmed.ncbi.nlm.nih.gov/31881062
  71. Fan W, Huang Z, Xiao Z, Li S, Ma Q. The cytochrome P4501A1 gene polymorphisms and endometriosis: a meta-analysis. J Assist Reprod Genet. 2016/08/15. 2016;33(10):1373–83. Available from: https://pubmed.ncbi.nlm.nih.gov/27525656
  72. Kim J-H, Kim T-H, Kim Y-S, Jang W-C, Ryu A, Hwang J-Y, et al. Mucin gene polymorphisms are associated with endometriosis in Korean women. Arch Gynecol Obstet. 2019;301(3):801–7. Available from: http://dx.doi.org/10.1007/s00404-019-05409-0
  73. Sirohi D, Al Ramadhani R, Knibbs LD. Environmental exposures to endocrine disrupting chemicals (EDCs) and their role in endometriosis: a systematic literature review. Rev Environ Health. 2020;36(1):101–15. Available from: http://dx.doi.org/10.1515/reveh-2020-0046
  74. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect. 1996;104 Suppl 4(Suppl 4):715–40. Available from: https://pubmed.ncbi.nlm.nih.gov/8880000
  75. Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology. 2012/06/25. 2012;153(9):4097–110. Available from: https://pubmed.ncbi.nlm.nih.gov/22733974
  76. Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord. 2019;21(1):127–47. Available from: http://dx.doi.org/10.1007/s11154-019-09521-z
  77. Arase S, Ishii K, Igarashi K, Aisaki K, Yoshio Y, Matsushima A, et al. Endocrine Disrupter Bisphenol A Increases In Situ Estrogen Production in the Mouse Urogenital Sinus. Biol Reprod. 2010;84(4):734–42. Available from: http://dx.doi.org/10.1095/biolreprod.110.087502
  78. Walker DM, Gore AC. Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol. 2011/01/25. 2011;7(4):197–207. Available from: https://pubmed.ncbi.nlm.nih.gov/21263448
  79. Gore AC, Patisaul HB. Neuroendocrine disruption: historical roots, current progress, questions for the future. Front Neuroendocrinol. 2010/07/16. 2010;31(4):395–9. Available from: https://pubmed.ncbi.nlm.nih.gov/20638407
  80. Skinner MK, Anway MD, Savenkova MI, Gore AC, Crews D. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One. 2008/11/18. 2008;3(11):e3745–e3745. Available from: https://pubmed.ncbi.nlm.nih.gov/19015723
  81. McKinney JD, Waller CL. Molecular determinants of hormone mimicry: Halogenated aromatic hydrocarbon environmental agents. J Toxicol Environ Heal Part B. 1998;1(1):27–58. Available from: http://dx.doi.org/10.1080/10937409809524542
  82. Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017/03/29. 2017;233(3):R109–29. Available from: https://pubmed.ncbi.nlm.nih.gov/28356401
  83. Aoyama H, Hojo H, Takahashi KL, Shimizu-Endo N, Araki M, Takeuchi-Kashimoto Y, et al. Two-generation reproduction toxicity study in rats with methoxychlor. Congenit Anom (Kyoto). 2012;52(1):28–41. Available from: http://dx.doi.org/10.1111/j.1741-4520.2011.00344.x
  84. Yu Y, Yang A, Zhang J, Hu S. Maternal exposure to the mixture of organophosphorus pesticides induces reproductive dysfunction in the offspring. Environ Toxicol. 2011;28(9):507–15. Available from: http://dx.doi.org/10.1002/tox.20741
  85. Uslu U, Sandal S, Cumbul A, Yildiz S, Aydin M, Yilmaz B. Evaluation of estrogenic effects of polychlorinated biphenyls and organochlorinated pesticides using immature rat uterotrophic assay. Hum & Exp Toxicol. 2013;32(5):476–82. Available from: http://dx.doi.org/10.1177/0960327112472999
  86. Laffin B, Chavez M, Pine M. The pyrethroid metabolites 3-phenoxybenzoic acid and 3-phenoxybenzyl alcohol do not exhibit estrogenic activity in the MCF-7 human breast carcinoma cell line or Sprague–Dawley rats. Toxicology. 2010;267(1–3):39–44. Available from: http://dx.doi.org/10.1016/j.tox.2009.10.003
  87. Mlynarczuk J, Wrobel MH, Kotwica J. Effect of environmental pollutants on oxytocin synthesis and secretion from corpus luteum and on contractions of uterus from pregnant cows. Toxicol Appl Pharmacol. 2010;247(3):243–9. Available from: http://dx.doi.org/10.1016/j.taap.2010.07.003
  88. Soyer C, Bayram M. Analysis of Heavy Metals in the Endometrial Tissue Using Electron Microscope. Environ Monit Assess. 2006;130(1–3):141–7. Available from: http://dx.doi.org/10.1007/s10661-006-9384-5
  89. Tanrıkut E, Karaer A, Celik O, Celik E, Otlu B, Yilmaz E, et al. Role of endometrial concentrations of heavy metals (cadmium, lead, mercury and arsenic) in the aetiology of unexplained infertility. Eur J Obstet & Gynecol Reprod Biol. 2014;179:187–90. Available from: http://dx.doi.org/10.1016/j.ejogrb.2014.05.039
  90. Pérez-Debén S, Gonzalez-Martin R, Palomar A, Quiñonero A, Salsano S, Dominguez F. Copper and lead exposures disturb reproductive features of primary endometrial stromal and epithelial cells. Reprod Toxicol. 2020;93:106–17. Available from: http://dx.doi.org/10.1016/j.reprotox.2020.01.008
  91. Piazza MJ, Urbanetz AA. Environmental toxins and the impact of other endocrine disrupting chemicals in women's reproductive health. JBRA Assist Reprod. 2019;23(2):154–64. Available from: https://pubmed.ncbi.nlm.nih.gov/30875185
  92. Cheon Y-P. Di-(2-ethylhexyl) Phthalate (DEHP) and Uterine Histological Characteristics. Dev Reprod. 2020/03/31. 2020;24(1):1–17. Available from: https://pubmed.ncbi.nlm.nih.gov/32411914
  93. Yang S, Arcanjo RB, Nowak RA. The effects of the phthalate DiNP on reproduction†. Biol Reprod. 2021;104(2):305–16. Available from: https://pubmed.ncbi.nlm.nih.gov/33125036
  94. Pivonello C, Muscogiuri G, Nardone A, Garifalos F, Provvisiero DP, Verde N, et al. Bisphenol A: an emerging threat to female fertility. Reprod Biol Endocrinol. 2020;18(1):22. Available from: https://pubmed.ncbi.nlm.nih.gov/32171313
  95. Ziv-Gal A, Flaws JA. Evidence for bisphenol A-induced female infertility: a review (2007-2016). Fertil Steril. 2016/07/12. 2016;106(4):827–56. Available from: https://pubmed.ncbi.nlm.nih.gov/27417731
  96. Nelson W, Adu‐Gyamfi EA, Czika A, Wang Y, Ding Y. Bisphenol A‐induced mechanistic impairment of decidualization. Mol Reprod Dev. 2020;87(8):837–42. Available from: http://dx.doi.org/10.1002/mrd.23400
  97. Gupta H, Deshpande SB. Bisphenol A decreases the spontaneous contractions of rat uterus in vitro through a nitrergic mechanism. J Basic Clin Physiol Pharmacol. 2018;29(6):593–8. Available from: http://dx.doi.org/10.1515/jbcpp-2017-0068
  98. Leung Y-K, Biesiada J, Govindarajah V, Ying J, Kendler A, Medvedovic M, et al. Low-Dose Bisphenol A in a Rat Model of Endometrial Cancer: A CLARITY-BPA Study. Environ Health Perspect. 2020/12/09. 2020;128(12):127005. Available from: https://pubmed.ncbi.nlm.nih.gov/33296240
  99. Gordts S, Koninckx P, Brosens I. Pathogenesis of deep endometriosis. Fertil Steril. 2017;108(6):872-885.e1. Available from: http://dx.doi.org/10.1016/j.fertnstert.2017.08.036
  100. Bruner-Tran KL, Osteen KG. Dioxin-like PCBs and endometriosis. Syst Biol Reprod Med. 2010;56(2):132–46. Available from: https://pubmed.ncbi.nlm.nih.gov/20377312
  101. Bruner-Tran KL, Ding T, Osteen KG. Dioxin and endometrial progesterone resistance. Semin Reprod Med. 2010/01/26. 2010;28(1):59–68. Available from: https://pubmed.ncbi.nlm.nih.gov/20104429
  102. Giampaolino P, Della Corte L, Foreste V, Barra F, Ferrero S, Bifulco G. Dioxin and endometriosis: a new possible relation based on epigenetic theory. Gynecol Endocrinol. 2019;36(4):279–84. Available from: http://dx.doi.org/10.1080/09513590.2019.1698024
  103. Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, et al. correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet. 2015;292(5):973–86. Available from: http://dx.doi.org/10.1007/s00404-015-3739-5
  104. Niskar AS, Needham LL, Rubin C, Turner WE, Martin CA, Patterson DG, et al. Serum dioxins, polychlorinated biphenyls, and endometriosis: A case-control study in Atlanta. Chemosphere. 2009;74(7):944–9. Available from: http://dx.doi.org/10.1016/j.chemosphere.2008.10.005
  105. Trabert B, De Roos AJ, Schwartz SM, Peters U, Scholes D, Barr DB, et al. Non-dioxin-like polychlorinated biphenyls and risk of endometriosis. Environ Health Perspect. 2010/04/27. 2010;118(9):1280–5. Available from: https://pubmed.ncbi.nlm.nih.gov/20423815
  106. Cai J-L, Liu L-L, Hu Y, Jiang X-M, Qiu H-L, Sha A-G, et al. Polychlorinated biphenyls impair endometrial receptivity in vitro via regulating mir-30d expression and epithelial mesenchymal transition. Toxicology. 2016;365:25–34. Available from: http://dx.doi.org/10.1016/j.tox.2016.07.017
  107. Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. Environ Res. 2021;194:110694. Available from: http://dx.doi.org/10.1016/j.envres.2020.110694
  108. Brehm E, Flaws JA. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology. 2019;160(6):1421–35. Available from: https://pubmed.ncbi.nlm.nih.gov/30998239
  109. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015/11/06. 2015;36(6):E1–150. Available from: https://pubmed.ncbi.nlm.nih.gov/26544531
  110. Rafique S, Decherney AH. Medical Management of Endometriosis. Clin Obstet Gynecol. 2017;60(3):485–96. Available from: https://pubmed.ncbi.nlm.nih.gov/28590310
  111. Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho S, Hunt P, et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril. 2008;90(4):911–40. Available from: https://pubmed.ncbi.nlm.nih.gov/18929049
  112. Khan Z, Zheng Y, Jones TL, Delaney AA, Correa LF, Shenoy CC, et al. Epigenetic Therapy: Novel Translational Implications for Arrest of Environmental Dioxin-Induced Disease in Females. Endocrinology. 2017;159(1):477–89. Available from: http://dx.doi.org/10.1210/en.2017-00860
  113. VoPham T, Bertrand KA, Jones RR, Deziel NC, DuPré NC, James P, et al. Dioxin exposure and breast cancer risk in a prospective cohort study. Environ Res. 2020/04/13. 2020;186:109516. Available from: https://pubmed.ncbi.nlm.nih.gov/32305677
  114. Bao Y, Zhang L, Liu X, Shi L, Li J, Meng G, et al. Dioxin-like compounds in paired maternal serum and breast milk under long sampling intervals. Ecotoxicol Environ Saf. 2020;194:110339. Available from: http://dx.doi.org/10.1016/j.ecoenv.2020.110339
  115. Cai LY, Izumi S, Suzuki T, Goya K, Nakamura E, Sugiyama T, et al. Dioxins in ascites and serum of women with endometriosis: a pilot study. Hum Reprod. 2010;26(1):117–26. Available from: http://dx.doi.org/10.1093/humrep/deq312
  116. Heilier J-F, Nackers F, Verougstraete V, Tonglet R, Lison D, Donnez J. Increased dioxin-like compounds in the serum of women with peritoneal endometriosis and deep endometriotic (adenomyotic) nodules. Fertil Steril. 2005;84(2):305–12. Available from: http://dx.doi.org/10.1016/j.fertnstert.2005.04.001
  117. Mayani A, Barel S, Soback S, Almagor M. Dioxin concentrations in women with endometriosis. Hum Reprod. 1997;12(2):373–5. Available from: http://dx.doi.org/10.1093/humrep/12.2.373
  118. Simsa P, Mihalyi A, Schoeters G, Koppen G, Kyama CM, Den Hond EM, et al. Increased exposure to dioxin-like compounds is associated with endometriosis in a case–control study in women. Reprod Biomed Online. 2010;20(5):681–8. Available from: http://dx.doi.org/10.1016/j.rbmo.2010.01.018
  119. Buck Louis GM, Weiner JM, Whitcomb BW, Sperrazza R, Schisterman EF, Lobdell DT, et al. Environmental PCB exposure and risk of endometriosis. Hum Reprod. 2005;20(1):279–85. Available from: http://dx.doi.org/10.1093/humrep/deh575
  120. Porpora MG, Ingelido AM, Domenico A di, Ferro A, Crobu M, Pallante D, et al. Increased levels of polychlorobiphenyls in Italian women with endometriosis. Chemosphere. 2006;63(8):1361–7. Available from: http://dx.doi.org/10.1016/j.chemosphere.2005.09.022
  121. Tsukino H, Hanaoka T, Sasaki H, Motoyama H, Hiroshima M, Tanaka T, et al. Associations between serum levels of selected organochlorine compounds and endometriosis in infertile Japanese women. Environ Res. 2005;99(1):118–25. Available from: http://dx.doi.org/10.1016/j.envres.2005.04.003
  122. Martinez-Zamora MA, Mattioli L, Parera J, Abad E, Coloma JL, van Babel B, et al. Increased levels of dioxin-like substances in adipose tissue in patients with deep infiltrating endometriosis. Hum Reprod. 2015;30(5):1059–68. Available from: http://dx.doi.org/10.1093/humrep/dev026
  123. Ploteau S, Cano-Sancho G, Volteau C, Legrand A, Vénisseau A, Vacher V, et al. Associations between internal exposure levels of persistent organic pollutants in adipose tissue and deep infiltrating endometriosis with or without concurrent ovarian endometrioma. Environ Int. 2017;108:195–203. Available from: http://dx.doi.org/10.1016/j.envint.2017.08.019
  124. De Felip E, Porpora MG, di Domenico A, Ingelido AM, Cardelli M, Cosmi E V, et al. Dioxin-like compounds and endometriosis: a study on Italian and Belgian women of reproductive age. Toxicol Lett. 2004;150(2):203–9. Available from: http://dx.doi.org/10.1016/j.toxlet.2004.01.008
  125. Porpora MG, Medda E, Abballe A, Bolli S, De Angelis I, di Domenico A, et al. endometriosis and organochlorinated environmental pollutants: a case-control study on Italian women of reproductive age. Environ Health Perspect. 2009/03/31. 2009;117(7):1070–5. Available from: https://pubmed.ncbi.nlm.nih.gov/19654915
  126. Fierens S, Mairesse H, Heilier J, De Burbure C, Focant J, Eppe G, et al. Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis: findings in a population-based study in Belgium. Biomarkers. 2003;8(6):529–34. Available from: http://dx.doi.org/10.1080/1354750032000158420
  127. van den Brand AD, Rubinstein E, de Jong PC, van den Berg M, van Duursen MBM. Primary endometrial 3D co-cultures: A comparison between human and rat endometrium. J Steroid Biochem Mol Biol. 2019;194:105458. Available from: http://dx.doi.org/10.1016/j.jsbmb.2019.105458
  128. Zheng Y, Khan Z, Zanfagnin V, Correa LF, Delaney AA, Daftary GS. Epigenetic Modulation of Collagen 1A1: Therapeutic Implications in Fibrosis and Endometriosis1. Biol Reprod. 2016;94(4). Available from: http://dx.doi.org/10.1095/biolreprod.115.138115
  129. Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr. 2009;21(2):243–51. Available from: https://pubmed.ncbi.nlm.nih.gov/19663042
  130. KIM M, BAE M, NA H, YANG M. Environmental Toxicants—Induced Epigenetic Alterations and Their Reversers. J Environ Sci Heal Part C. 2012;30(4):323–67. Available from: http://dx.doi.org/10.1080/10590501.2012.731959
  131. Joshi NR, Kohan-Ghadr H-R, Roqueiro DS, Yoo JY, Fru K, Hestermann E, et al. Genetic and epigenetic changes in the eutopic endometrium of women with endometriosis: association with decreased endometrial αvβ3 integrin expression. Mol Hum Reprod. 2021;27(6):gaab018. Available from: https://pubmed.ncbi.nlm.nih.gov/33693877
  132. De Pascali F, Casarini L, Kuhn C, Simoni M, Mahner S, Jeschke U, et al. Nuclear expression of VDR and AHR is mutually exclusive in glandular cells in endometriosis. Histochem Cell Biol. 2021/06/21. 2021;156(4):391–9. Available from: https://pubmed.ncbi.nlm.nih.gov/34155552
  133. Tanha M, Bozorgmehr M, Shokri M-R, Edalatkhah H, Tanha M, Zarnani A-H, et al. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin potential impacts on peripheral blood mononuclear cells of endometriosis women. J Reprod Immunol. 2022;149:103439. Available from: http://dx.doi.org/10.1016/j.jri.2021.103439
  134. Al-Ghezi ZZ, Singh N, Mehrpouya-Bahrami P, Busbee PB, Nagarkatti M, Nagarkatti PS. AhR Activation by TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) Attenuates Pertussis Toxin-Induced Inflammatory Responses by Differential Regulation of Tregs and Th17 Cells Through Specific Targeting by microRNA. Front Microbiol. 2019;10:2349. Available from: https://pubmed.ncbi.nlm.nih.gov/31681214
  135. Li X, Peng J, Gu W, Guo X. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma. PLoS One. 2016;11(3):e0150551–e0150551. Available from: https://pubmed.ncbi.nlm.nih.gov/26938767

How to Cite

Meidyana, S. (2023). Evidence of Dioxin as Endocrine Disrupting Chemicals in the Development of Endometriosis: A Narrative Review. Bali Medical Journal, 12(1), 171–183. https://doi.org/10.15562/bmj.v12i1.3816

HTML
3

Total
0

Share

Search Panel

Shafira Meidyana
Google Scholar
Pubmed
BMJ Journal