Skip to main content Skip to main navigation menu Skip to site footer

Human umbilical cords mesenchymal stem cells for kidney diseases

  • Dianita Halimah Harahap ,
  • Gampo Alam Irdam ,

Abstract

Stem cell therapy is an emerging therapy in the medical field. Recent studies show that stem cell therapy gives promising results. One of the stem cell sources is the human umbilical cord that has many potential, not only for therapy alone but also for banking. Human umbilical cord mesenchymal stem cells (HUCMSCs) have greater advantages than bone marrow and adipose tissue-derived stem cells in isolating the cells and the shortest culture period. Studies on animal models showed improvement of kidney disease in the various mechanism. Human studies regarding human umbilical cord mesenchymal stem cells as therapy for kidney disease have not been conducted on a large scale, but MSC therapy appears safe.

References

  1. Humes HD, Szczypka MS. Advances in cell therapy for renal failure. Transpl Immunol. 2004;12(3–4):219–27. Available from: http://dx.doi.org/10.1016/j.trim.2003.12.015
  2. Badan Penelitian dan Pengembangan Kesehatan. Riset Kesehatan Dasar (RISKESDAS) 2013. Lap Nas 2013. 2013;1–384.
  3. Of OJOS, Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013;3(1):4–4.
  4. Stevens PE, Levin A, Disease K, Global I, Chronic O. Annals of Internal Medicine Clinical Guideline Evaluation and Management of Chronic Kidney Disease : Synopsis of the Kidney Disease : Improving Global Outcomes 2012 Clinical. Ann Intern Med. 2014;158(11):825–31.
  5. Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther. 2014;16(2):R79.
  6. Ding D-C, Chang Y-H, Shyu W-C, Lin S-Z. Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy. Cell Transplant. 2015;24(3):339–47. Available from: http://dx.doi.org/10.3727/096368915x686841
  7. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells. 2006;24(5):1294–301. Available from: http://dx.doi.org/10.1634/stemcells.2005-0342
  8. Collins E, Gu F, Qi M, Molano I, Ruiz P, Sun L, et al. Differential efficacy of human mesenchymal stem cells based on source of origin. J Immunol. 2014;193(9):4381–90.
  9. Morigi M, Benigni A. Mesenchymal stem cells and kidney repair. Nephrol Dial Transplant. 2012;28(4):788–93. Available from: http://dx.doi.org/10.1093/ndt/gfs556
  10. Eirin A, Lerman LO. Mesenchymal stem cell treatment for chronic renal failure. Stem Cell Res Ther. 2014;5(4):83. Available from: https://pubmed.ncbi.nlm.nih.gov/25158205
  11. Wang Y, He J, Pei X, Zhao W. Systematic review and meta-analysis of mesenchymal stem/stromal cells therapy for impaired renal function in small animal models. Nephrology. 2013;18(3):201–8. Available from: http://dx.doi.org/10.1111/nep.12018
  12. Yang X, Jiale L, Jiansheng X, Yuanhui GAO, Qing C, Yong CAI, et al. 肝细胞生长因子延缓慢性肾脏病纤维化进展 BM-MSCs from Wuzhishan mini-pigs delay the progress of renal fibrosis induced by chronic kidney disease through autocrine hepatocyte growth factor in vitro. 2016;41(12):1260–9.
  13. Aghajani Nargesi A, Lerman LO, Eirin A. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem Cell Res Ther. 2017;8(1):273. Available from: https://pubmed.ncbi.nlm.nih.gov/29202871
  14. Ebrahimi B, Eirin A, Li Z, Zhu X-Y, Zhang X, Lerman A, et al. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis. PLoS One. 2013;8(7):e67474–e67474. Available from: https://pubmed.ncbi.nlm.nih.gov/23844014
  15. Vidane AS, Pinheiro AO, Casals JB, Mcfns DP, Rs H, Martins DS, et al. Transplantation of amniotic membrane- ­ derived multipotent cells ameliorates and delays the progression of chronic kidney disease in cats. 2017;52:316–26.
  16. Quimby JM, Borjesson DL. Mesenchymal stem cell therapy in cats: Current knowledge and future potential. J Feline Med Surg. 2018;20(3):208–16. Available from: http://dx.doi.org/10.1177/1098612x18758590
  17. Rosselli DD, Mumaw JL, Dickerson V, Brown CA, Brown SA, Schmiedt CW. Research in Veterinary Science Ef fi cacy of allogeneic mesenchymal stem cell administration in a model of acute ischemic kidney injury in cats. YRVSC. 2016;108:18–24.
  18. Rahyussalim AJ, Saleh I, Kurniawati T, Lutfi APWY. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report. J Med Case Rep. 2017;11(1):334. Available from: https://pubmed.ncbi.nlm.nih.gov/29187247
  19. D. D, P. Z, Y. G. A randomised double-blind, placebo-controlled trial of allogeneic umbilical cord-derived mesenchymal stem cell for lupus nephritis. Vol. 76, Annals of the Rheumatic Diseases. 2017. p. 1436–9.
  20. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012/10/25. 2012;7(10):e47559–e47559. Available from: https://pubmed.ncbi.nlm.nih.gov/23133515
  21. Squillaro T, Peluso G, Galderisi U. Review Clinical Trials With Mesenchymal Stem Cells : An Update. 2016;25:829–48.
  22. Peired AJ, Sisti A, Romagnani P. Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence. Stem Cells Int. 2016/09/19. 2016;2016:4798639. Available from: https://pubmed.ncbi.nlm.nih.gov/27721835
  23. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12(5):574–91.
  24. Abdef AS, Bef AEA, D MPP, A PMK, F AHC, D ALK, et al. Graft-versus-host disease after solid organ transplantation : A single center experience and review of literature. 2012;17(4):133–9.
  25. Chang J-W, Hung S-P, Wu H-H, Wu W-M, Yang A-H, Tsai H-L, et al. Therapeutic Effects of Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation in Experimental Lupus Nephritis. Cell Transplant. 2011;20(2):245–58. Available from: http://dx.doi.org/10.3727/096368910x520056
  26. Park JH, Park J, Hwang SH, Han H, Ha H. Delayed Treatment With Human Umbilical Cord Blood-Derived Stem Cells Attenuates Diabetic Renal Injury. Transplant Proc. 2012;44(4):1123–6. Available from: http://dx.doi.org/10.1016/j.transproceed.2012.03.044
  27. Fahmy SR, Soliman AM, El Ansary M, Elhamid SA, Mohsen H. Therapeutic efficacy of human umbilical cord mesenchymal stem cells transplantation against renal ischemia/reperfusion injury in rats. Tissue Cell. 2017;49(3):369–75. Available from: http://dx.doi.org/10.1016/j.tice.2017.04.006
  28. Liu P, Feng Y, Dong D, Liu X, Chen Y, Wang Y, et al. Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep. 2016;6:20287. Available from: https://pubmed.ncbi.nlm.nih.gov/26830766
  29. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34. Available from: https://pubmed.ncbi.nlm.nih.gov/23618405
  30. Qiu Z, Zhou D, Sun D. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Renal Ischaemia-reperfusion Injury in Rats. Int braz j urol. 2014;40(4):553–61. Available from: http://dx.doi.org/10.1590/s1677-5538.ibju.2014.04.16
  31. Ju G, Cheng J, Zhong L, Wu S, Zou X, Zhang G, et al. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS One. 2015;10(3):e0121534–e0121534. Available from: https://pubmed.ncbi.nlm.nih.gov/25793303
  32. Fang TC, Pang CY, Chiu SC, Ding DC, Tsai RK. Renoprotective Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Immunodeficient Mice Suffering from Acute Kidney Injury. PLoS One. 2012;7(9):1–15.
  33. Park JH, Hwang I, Hwang SH, Han H, Ha H. Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract. 2012;98(3):465–73. Available from: http://dx.doi.org/10.1016/j.diabres.2012.09.034
  34. Jang HR, Park JH, Kwon GY, Lee JE, Huh W, Jin HJ, et al. Effect of preemptive treatment with human umbilical cord blood-derived mesenchymal stem cells on the development of renal ischemia-reperfusion injury in mice. Am J Physiol Physiol. 2014;307(10):F1149–61. Available from: http://dx.doi.org/10.1152/ajprenal.00555.2013
  35. Gu Z, Akiyama K, Ma X, Zhang H, Feng X, Yao G, et al. Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus. 2010;19(13):1502–14. Available from: http://dx.doi.org/10.1177/0961203310373782
  36. Chen Y, Qian H, Zhu W, Zhang X, Yan Y, Ye S, et al. Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev. 2011;20(1):103–13.
  37. Cao H, Qian H, Xu W, Zhu W, Zhang X, Chen Y, et al. Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnol Lett. 2010;32(5):725–32. Available from: http://dx.doi.org/10.1007/s10529-010-0207-y
  38. Perico L, Morigi M, Rota C, Breno M, Mele C, Noris M, et al. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun. 2017;8(1).
  39. Xu S, Shi H, Zhu J, Wang Y, Cao Y, Li K, et al. A prospective comparative study of haemodynamic, electrolyte, and metabolic changes during percutaneous nephrolithotomy and minimally invasive percutaneous nephrolithotomy. World J Urol. 2013;32(5):1275–80. Available from: http://dx.doi.org/10.1007/s00345-013-1204-2
  40. Ma H, Sun L, Zhang X, Wu Y, Xu Y. Human Umbilical Mesenchymal Stem Cells Attenuate the Progression of Focal Segmental Glomerulosclerosis. Am J Med Sci. 2013;346(6):486–93. Available from: http://dx.doi.org/10.1097/maj.0b013e3182831777
  41. Li W, Wang L, Chu X, Cui H, Bian Y. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure. Mol Cell Biochem. 2017;428(1–2):203–12. Available from: http://dx.doi.org/10.1007/s11010-016-2930-8
  42. Lee JH, Kwon BS, Ha IS, Cheong H Il, Moon KC, Ahn HS, et al. Nephrotic syndrome in a child after umbilical-cord-blood transplantation. Pediatr Nephrol. 2006;21(9):1312–7. Available from: http://dx.doi.org/10.1007/s00467-006-0171-x
  43. Wu Z, Zhang S, Zhou L, Cai J, Tan J, Gao X, et al. Thromboembolism Induced by Umbilical Cord Mesenchymal Stem Cell Infusion: A Report of Two Cases and Literature Review. Transplant Proc. 2017;49(7):1656–8. Available from: http://dx.doi.org/10.1016/j.transproceed.2017.03.078

How to Cite

Harahap, D. H., & Irdam, G. A. (2022). Human umbilical cords mesenchymal stem cells for kidney diseases. Bali Medical Journal, 11(1), 155–159. https://doi.org/10.15562/bmj.v11i1.3085

HTML
0

Total
19

Share

Search Panel

Dianita Halimah Harahap
Google Scholar
Pubmed
BMJ Journal


Gampo Alam Irdam
Google Scholar
Pubmed
BMJ Journal