REVIEW

The potential effect and delivery of piperine on breast cancer

Desak Made Wihandani , I Putu Gede Septiawan Saputra, Ni Putu Sri Indrani Remitha, Anak Agung Bagus Putra Indrakusuma, Putu Anda Tusta Adiputra, I Gede Putu Supadmanaba

Desak Made Wihandani
Department of Biochemistry, Faculty of Medicine, Universitas Udayana, Bali, Indonesia. Email: dmwihandani@unud.ac.id

I Putu Gede Septiawan Saputra
Undergraduate Student, Faculty of Medicine, Universitas Udayana, Bali, Indonesia

Ni Putu Sri Indrani Remitha
Undergraduate Student, Faculty of Medicine, Universitas Udayana, Bali, Indonesia

Anak Agung Bagus Putra Indrakusuma
Undergraduate Student, Faculty of Medicine, Universitas Udayana, Bali, Indonesia

Putu Anda Tusta Adiputra
Division of Surgery Oncology, Department of Surgery, Faculty of Medicine, Universitas Udayana, Sanglah General Hospital, Denpasar, Bali, Indonesia

I Gede Putu Supadmanaba
Department of Biochemistry, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
Online First: July 16, 2021 | Cite this Article
Wihandani, D., Saputra, I., Remitha, N., Indrakusuma, A., Adiputra, P., Supadmanaba, I. 2021. The potential effect and delivery of piperine on breast cancer. Bali Medical Journal 10(2): 608-616. DOI:10.15562/bmj.v10i2.2247


Breast cancer is the most common malignancy in women worldwide. Breast cancer is associated with a high mortality rate and health-related economic burden. Breast cancer patients have a low 5-year life expectancy when diagnosed at advanced stages. Besides, the emergence of chemoresistance in breast cancer has led to an intense search for alternative anticancer agents. One of the potential anticancer compounds is Piperine. Several studies had found that Piperine has anticancer effects such as anti-proliferation, induces apoptosis, anti-migration or anti-metastasis, chemo-enhancer or chemosensitizer, cytotoxic agents, anti-angiogenesis, immune response modulators, and self-renewal inhibitor for cancer stem cells. Several delivery agents such as PLGA, PEG-PLGA and liposomes have been studied to improve Piperine's delivery and have shown good results. Therefore, the combination of Piperine and nanoparticles is a potential anticancer agent, especially in breast cancer.

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

Kementerian Kesehatan RI. Situasi penyakit kanker. INFODATIN. 2015;

Riskesdas. Riset Kesehatan Dasar. Kementeri Kesehat Republik Indones. 2018;44(8):1–200. Available from: http://arxiv.org/abs/1011.1669%0Ahttp://dx.doi.org/10.1088/1751-8113/44/8/085201%0Ahttp://stacks.iop.org/1751-8121/44/i=8/a=085201?key=crossref.abc74c979a75846b3de48a5587bf708f

Barron JJ, Quimbo R, Nikam PT, Amonkar MM. Assessing the economic burden of breast cancer in a US managed care population. Breast Cancer Res Treat. 2008;109(2):367–77.

Sun L, Legood R, Dos-Santos-Silva I, Gaiha SM, Sadique Z. Global treatment costs of breast cancer by stage: A systematic review. PLoS One. 2018;13(11):1–14.

Stojanovi?-Radi? Z, Pej?i? M, Dimitrijevi? M, Aleksi? A, Anil Kumar N V., Salehi B, et al. Piperine-A Major Principle of Black Pepper: A review of its bioactivity and studies. Appl Sci. 2019;9(20):1–29.

Rather RA, Bhagat M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol. 2018;6(FEB):1–12.

Lingli Q. Advance on delivery nanocarriers of piperine: Nanoparticles. E3S Web Conf. 2019;131:3–6.

Yardley DA. Drug Resistance and the Role of Combination Chemotherapy in Improving Patient Outcomes. Int J Breast Cancer. 2013;2013:1–15.

Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis. 2018;35(4):309–18.

Ji X, Lu Y, Tian H, Meng X, Wei M, Cho WC. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother. 2019;114(February):108800.

Takahashi R, Miyazaki H, Ochiya T. The Roles of MicroRNAs in Breast Cancer. Cancers (Basel). 2015;7(2):598–616.

Sasaki A, Tsunoda Y, Tsuji M, Udaka Y, Oyamada H, Tsuchiya H, et al. Decreased miR-206 expression in BRCA1 wild-type triple-negative breast cancer cells after concomitant treatment with gemcitabine and a poly(adp-ribose) polymerase-1 inhibitor. Anticancer Res. 2014;34(9):4893–7.

Xue J, Chi Y, Chen Y, Huang S, Ye X, Niu J, et al. MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene. 2016;35(4):448–58.

He DX, Gu XT, Li YR, Jiang L, Jin J, Ma X. Methylation-regulated miR-149 modulates chemoresistance by targeting GlcNAc N-deacetylase/N-sulfotransferase-1 in human breast cancer. FEBS J. 2014;281(20):4718–30.

Zhao L, Gu H, Chang J, Wu J, Wang D, Chen S, et al. MicroRNA-383 regulates the apoptosis of tumor cells through targeting Gadd45g. PLoS One. 2014;9(11):1–17.

Jiang L, He D, Yang D, Chen Z, Pan Q, Mao A, et al. MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett. 2014;588(11):2009–15.

Yang Q, Wang Y, Lu X, Zhao Z, Zhu L, Chen S, et al. MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget. 2015;6(5):3268–79.

Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2014;73(4):1434–44.

Park EY, Chang ES, Lee EJ, Lee HW, Kang HG, Chun KH, et al. Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res. 2014;74(24):7573–82.

Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, et al. JAK/STAT3-Regulated Fatty Acid ?-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab. 2018;27(1):136-150.e5.

Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13(4):227–32.

Wang Y, Palmfeldt J, Gregersen N, Makhov AM, Conway JF, Wang M, et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem. 2019;294(33):12380–91.

Yoshii Y, Furukawa T, Saga T, Fujibayashi Y. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: Overview and application. Cancer Lett. 2015;356(2):211–6.

Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, et al. Acetate dependence of tumors. Cell. 2014;159(7):1591–602.

Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Al Mazeedi MAM, et al. The role of tumor microenvironment in chemoresistance: To survive, keep your enemies closer. Int J Mol Sci. 2017;18(7).

Spano D, Zollo M. Tumor microenvironment: A main actor in the metastasis process. Clin Exp Metastasis. 2012;29(4):381–95.

Ansell SM, Vonderheide RH. Cellular composition of the tumor microenvironment. Am Soc Clin Oncol Educ book Am Soc Clin Oncol Annu Meet. 2013;

Hu WP, Kumar JV, Huang CJ, Chen WY. Computational selection of RNA aptamer against angiopoietin-2 and experimental evaluation. Biomed Res Int. 2015;2015.

Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal Stem Cells Protect Breast Cancer Cells through Regulatory T Cells: Role of Mesenchymal Stem Cell-Derived TGF-?. J Immunol. 2010;184(10):5885–94.

De Kruijf EM, Van Nes JGH, Sajet A, Tummers QRJG, Putter H, Osanto S, et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res. 2010;16(4):1272–80.

Chaiwun B, Sukhamwang N, Trakultivakorn H, Saha B, Young L, Tsao-Wei D, et al. GSTPi-positive tumour microenvironment-associated fibroblasts are significantly associated with GSTPi-negative cancer cells in paired cases of primary invasive breast cancer and axillary lymph node metastases. Br J Cancer. 2011;105(8):1224–9. Available from: http://dx.doi.org/10.1038/bjc.2011.352

Majeed M, Labs S, Majeed M. The medical uses of pepper. 2015;(January 2000).

Lu JJ, Bao JL, Chen XP, Huang M, Wang YT. Alkaloids isolated from natural herbs as the anticancer agents. Evidence-based Complement Altern Med. 2012;1–12.

Sahi S, Tewatia P, Ghosal S. Leishmania donovani pteridine reductase 1: Comparative protein modeling and protein-ligand interaction studies of the leishmanicidal constituents isolated from the fruits of Piper longum. J Mol Model. 2012;18(12):5065–73.

Philipova I, Valcheva V, Mihaylova R, Mateeva M, Doytchinova I, Stavrakov G. Synthetic piperine amide analogs with antimycobacterial activity. Chem Biol Drug Des. 2018;91(3):763–8.

Rodgers G, Doucette CD, Soutar DA, Liwski RS, Hoskin DW. Piperine impairs the migration and T cell-activating function of dendritic cells. Toxicol Lett. 2016;242:23–33.

Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Piperine—The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Compr Rev Food Sci Food Saf. 2017;16(1):124–40.

Chopra B, Dhingra AK, Kapoor RP, Prasad DN. Piperine and Its Various Physicochemical and Biological Aspects: A Review. Open Chem J. 2017;3(1):75–96.

Upadhya V, Pai SR, Sharma AK, Hegde H V., Kholkute SD, Joshi RK. Compound specific extraction of camptothecin from nothapodytes nimmoniana and piperine from piper nigrum using accelerated solvent extractor. J Anal Methods Chem. 2014;1–6.

Zarai Z, Boujelbene E, Ben Salem N, Gargouri Y, Sayari A. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. LWT - Food Sci Technol. 2013;50(2):634–41.

Katiyar SS, Muntimadugu E, Rafeeqi TA, Domb AJ, Khan W. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016;23(7):2608–16.

Pachauri M, Gupta ED, Ghosh PC. Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy [Internet]. Vol. 29, Journal of Drug Delivery Science and Technology. Elsevier Ltd; 2015. 269–282 p. Available from: http://dx.doi.org/10.1016/j.jddst.2015.08.009

Rad JG, Hoskin DW. Delivery of apoptosis-inducing piperine to triple-negative breast cancer cells via co-polymeric nanoparticles. Anticancer Res. 2020;40(2):689–94.

Burande AS, Viswanadh MK, Jha A, Mehata AK, Shaik A, Agrawal N, et al. EGFR Targeted Paclitaxel and Piperine Co-loaded Liposomes for the Treatment of Triple Negative Breast Cancer. AAPS PharmSciTech. 2020;21(5):1–12.

Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C. Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends Biotechnol. 2017;35(8):770–84.

Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 2012;161(2):505–22.

Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018;9(NOV):1–19.

Silva ATCR, Cardoso BCO, Silva MESR e, Freitas RFS, Sousa RG. Synthesis, Characterization, and Study of PLGA Copolymer <i>in Vitro</i> Degradation. J Biomater Nanobiotechnol. 2015;06(01):8–19.

Torchilin VP. Nanoparticles Technologies for Cancer Therapy. Vol. 197, Handbook of experimental pharmacology. 2010. 55–86 p.

Tyagi N, Rathore SS, Ghosh PC. Enhanced killing of human epidermoid carcinoma (KB) cells by treatment with ricin encapsulated into sterically stabilized liposomes in combination with monensin. Drug Deliv. 2011;18(6):394–404.

Tyagi N, Ghosh PC. Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: Effect of monensin intercalated into folate-tagged liposomes. Eur J Pharm Sci. 2011;43(4):343–53.

Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine. 2011;6:877–95.

Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun. 2017;8(1).

Rafiei P, Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: Pharmacokinetics and biodistribution profile. Int J Nanomedicine. 2017;12:935–47.

Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics. 2017;9(2):1–33.

Pentak D. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes. Eur Biophys J. 2016;45(2):175–86.

Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, et al. Antitumor efficacy of Piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem. 2013;141(3):2591–9. Available from: http://dx.doi.org/10.1016/j.foodchem.2013.04.125

Khamis AAA, Ali EMM, El-Moneim MAA, Abd-Alhaseeb MM, El-Magd MA, Salim EI. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed Pharmacother. 2018;105(June):1335–43. Available from: https://doi.org/10.1016/j.biopha.2018.06.105

Greenshields AL, Doucette CD, Sutton KM, Madera L, Annan H, Yaffe PB, et al. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015;357(1):129–40. Available from: http://dx.doi.org/10.1016/j.canlet.2014.11.017

Lai LH, Fu QH, Liu Y, Jiang K, Guo QM, Chen QY, et al. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol Sin. 2012;33(4):523–30. Available from: http://dx.doi.org/10.1038/aps.2011.209

Talib WH. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci Pharm. 2017;85(3):1–11.

Abdelhamed S, Yokoyama S, Refaat A, Ogura K, Yagita H, Awale S, et al. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res. 2014;34(4):1893–900.

Motiwala MN, Rangari VD. Combined effect of paclitaxel and piperine on a MCF-7 breast cancer cell line in vitro: Evidence of a synergistic interaction. Synergy. 2015;2(1):1–6. Available from: http://dx.doi.org/10.1016/j.synres.2015.04.001

Schmidt B, Ferreira C, Alves Passos CL, Silva JL, Fialho E. Resveratrol, Curcumin and Piperine Alter Human Glyoxalase 1 in MCF-7 Breast Cancer Cells. Int J Mol Sci. 2020;21(15).

Kakarala M, Brenner DE, Khorkaya H, Dontu G, Wicha MS. Targeting Breast Stem Cells with the Cancer Preventive Compounds Curcumin and Piperine. Breast Cancer Res Treat. 2010;122(3):777–85.

Verheul HM, Pinedo HM. The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGF-receptor kinase inhibitors. Clin Breast Cancer. 2000;1 Suppl 1(September):S80–4. Available from: http://dx.doi.org/10.3816/CBC.2000.s.015

Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(SUPPL. 3):4–10.

Lindvall C, Bu W, Williams BO, Li Y. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev. 2007;3(2):157–68.


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0