REVIEW

Exercise and cardiomyocyte regeneration

Indira Vidiari Juhanna , I Nyoman Adiputra, I Putu Gede Adiatmika, I Made Muliarta, Ni Made Linawati, I Putu Adiartha Griadhi

Indira Vidiari Juhanna
Department of Physiology, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia. Email: indiravidiarifk@unud.ac.id

I Nyoman Adiputra
Department of Physiology, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia

I Putu Gede Adiatmika
Department of Physiology, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia

I Made Muliarta
Department of Physiology, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia

Ni Made Linawati
Department of Histology, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia

I Putu Adiartha Griadhi
Department of Physiology, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
Online First: December 01, 2020 | Cite this Article
Juhanna, I., Adiputra, I., Adiatmika, I., Muliarta, I., Linawati, N., Griadhi, I. 2020. Exercise and cardiomyocyte regeneration. Bali Medical Journal 9(3): 947-951. DOI:10.15562/bmj.v9i3.2029


Cardiovascular disease is the most common cause of death. Many researchers have evaluated the effect of exercise on heart function improvement, but studies about how exercise can affect heart regeneration are rare. Most of the previous studies only assess biomarkers that indicate heart damage. GATA-4 Transcription Factor is one of the transcription factors that form heart cells, showing the heart's ability to function properly under pressure. Cardiac-restricted zinc-finger TF GATA-4 is a survival factor that can break the vicious cycle of post-MI heart failure through increased myocardial angiogenesis, decreased apoptosis, and increased c-kit cell generation. Further research is needed because of its critical role in heart regeneration, whether GATA-4 can be used as an excellent cardiac biomarker in the future, and how the role of exercise or physical exercise on GATA-4 protein and its expression in cardiac regeneration.

References

WHO. WHO Fact sheets, 2017. from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Fact sheets, 2017.

WHO. Prevention of Recurrences of Myocardial Infarction and Stroke Study. Who. Published online 2013. doi:10.1128/AEM.71.3.1668

Rittoo D, Jones A, Lecky B, Neithercut D. Elevation of Cardiac Troponin T, But Not Cardiac Troponin I, in Patients With Neuromuscular Diseases. J Am Coll Cardiol. Published online 2014. doi:10.1016/j.jacc.2014.03.027

Li F, Yi L, Yan H, et al. High-sensitivity cardiac troponin T release after a single bout of high-intensity interval exercise in experienced marathon runners. J Exerc Sci Fit. Published online 2017. doi:10.1016/j.jesf.2017.08.001

T.M.H. E, M.T.W. V, K. G, M.T.E. H, D.H.J. T. The impact of obesity on cardiac troponin levels after prolonged exercise in humans. Eur J Appl Physiol. Published online 2012.

Van Berlo JH, Molkentin JD. An emerging consensus on cardiac regeneration. Nat Med. Published online 2014. doi:10.1038/nm.3764

Broughton KM, Wang BJ, Firouzi F, et al. Mechanisms of cardiac repair and regeneration. Circ Res. Published online 2018. doi:10.1161/CIRCRESAHA.117.312586

Forough R, Scarcello C, Perkins M. Cardiac biomarkers: A focus on cardiac regeneration. J Tehran Univ Hear Cent. Published online 2011.

Broderick TL, Parrott CR, Wang D, Jankowski M, Gutkowska J. Expression of cardiac GATA4 and downstream genes after exercise training in the db/db mouse. Pathophysiology. Published online 2012. doi:10.1016/j.pathophys.2012.06.001

Haubner BJ, Adamowicz-Brice M, Khadayate S, et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY). Published online 2012. doi:10.18632/aging.100526

Senyo SE, Lee RT, Kühn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. Published online 2014. doi:10.1016/j.scr.2014.09.003

Lin Z, Pu WT. Strategies for cardiac regeneration and repair. Sci Transl Med. Published online 2014. doi:10.1126/scitranslmed.3006681

Pinto AR, Ilinykh A, Ivey MJ, et al. Revisiting cardiac cellular composition. Circ Res. Published online 2016. doi:10.1161/CIRCRESAHA.115.307778

Laflamme MA, Murry CE. Heart regeneration. Nature. Published online 2011. doi:10.1038/nature10147

Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol. Published online 2012. doi:10.1146/annurev-cellbio-101011-155739

Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. Published online 2018. doi:10.1038/s41569-018-0036-6

Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res. Published online 2016. doi:10.1007/s00441-016-2431-9

Zhang Y, Mignone J, Robb Maclellan W. Cardiac regeneration and stem cells. Physiol Rev. Published online 2015. doi:10.1152/physrev.00021.2014

Yilbas AE, Hamilton A, Wang Y, et al. Activation of GATA4 gene expression at the early stage of cardiac specification. Front Chem. Published online 2014. doi:10.3389/fchem.2014.00012

Dobrzycki T, Lalwani M, Telfer C, Monteiro R, Patient R. The roles and controls of GATA factors in blood and cardiac development. IUBMB Life. Published online 2020. doi:10.1002/iub.2178

Somani S, Shukla J. The P300 wave of Event-Related Potential. Res Rev J Med Heal Sci. Published online 2014.

Rysä J, Tenhunen O, Serpi R, et al. GATA-4 is an angiogenic survival factor of the infarcted heart. Circ Hear Fail. Published online 2010. doi:10.1161/CIRCHEARTFAILURE.109.889642

Jun JH, Shim JK, Ryoo HM, Kwak YL. Erythropoietin-activated ERK/MAP kinase enhances GATA-4 acetylation via phosphorylation of serine 261 of GATA-4. J Cell Physiol. Published online 2013. doi:10.1002/jcp.24121

He JG, Li HR, Han JX, et al. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes. Sci Rep. Published online 2018. doi:10.1038/s41598-018-27435-9

Xu M, Millard RW, Ashraf M. Role of GATA-4 in differentiation and survival of bone marrow mesenchymal stem cells. In: Progress in Molecular Biology and Translational Science. ; 2012. doi:10.1016/B978-0-12-398459-3.00010-1

Gao XR, Tan YZ, Wang HJ. Overexpression of Csx/Nkx2.5 and GATA-4 Enhances the Efficacy of Mesenchymal Stem Cell Transplantation After Myocardial Infarction. Circ J. Published online 2011. doi:10.1253/circj.CJ-11-0238

Li H, Zuo S, Pasha Z, et al. GATA-4 promotes myocardial transdifferentiation of mesenchymal stromal cells via up-regulating IGFBP-4. Cytotherapy. Published online 2011. doi:10.3109/14653249.2011.597380

Singh MK, Li Y, Li S, et al. Gata4 and Gata5 cooperatively regulate cardiac myocyte proliferation in mice. J Biol Chem. Published online 2010. doi:10.1074/jbc.M109.038539

Van Berlo JH, Aronow BJ, Molkentin JD. Parsing the roles of the transcription factors GATA-4 and GATA-6 in the adult cardiac hypertrophic response. PLoS One. Published online 2013. doi:10.1371/journal.pone.0084591

Malek Mohammadi M, Kattih B, Grund A, et al. The transcription factor GATA 4 promotes myocardial regeneration in neonatal mice . EMBO Mol Med. Published online 2017. doi:10.15252/emmm.201606602

Schlesinger J, Schueler M, Grunert M, et al. The cardiac transcription network modulated by gata4, mef2a, nkx2.5, srf, histone modifications, and microRNAs. PLoS Genet. Published online 2011. doi:10.1371/journal.pgen.1001313

Steinhauser ML, Lee RT. Regeneration of the heart. EMBO Mol Med. Published online 2011. doi:10.1002/emmm.201100175

Naderi N, Hemmatinafar M, Gaeini AA, et al. High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPβ in rats after myocardial infarction. Life Sci. Published online 2019. doi:10.1016/j.lfs.2019.02.045

Bahramian A, Mirzaei B, Karimzadeh F, et al. The effects of exercise training intensity on the expression of C/EBPβ and CITED4 in rats with myocardial infarction. Asian J Sports Med. Published online 2018. doi:10.5812/asjsm.59300

Xiao J, Xu T, Li J, et al. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. Int J Clin Exp Pathol. 2014;7(2):663-669.


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0